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The number of arc routing publications has increased
significantly in the last decade. Such an increase justi-
fies a second annotated bibliography, a sequel to Cor-
berán and Prins (Networks 56 (2010), 50–69), discussing
arc routing studies from 2010 onwards. These studies
are grouped into three main sections: single vehicle
problems, multiple vehicle problems and applications.
Each main section catalogs problems according to their
specifics. Section 2 is therefore composed of four sub-
sections, namely: the Chinese Postman Problem, the
Rural Postman Problem, the General Routing Problem
(GRP) and Arc Routing Problems (ARPs) with profits.
Section 3, devoted to the multiple vehicle case, begins
with three subsections on the Capacitated Arc Routing
Problem (CARP) and then delves into several variants
of multiple ARPs, ending with GRPs and problems with
profits. Section 4 is devoted to applications, includ-
ing distribution and collection routes, outdoor activities,
post-disaster operations, road cleaning and marking. As
new applications emerge and existing applications con-
tinue to be used and adapted, the future of arc routing
research looks promising. © 2017 Wiley Periodicals, Inc.
NETWORKS, Vol. 70(3), 144–194 2017
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1. INTRODUCTION

The number of arc routing publications has increased
significantly in the last decade. It is conceivable that the pub-
lication of books especially devoted to arc routing problems,
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including the most recent from [64], has boosted this research
area. Such an increase justifies the second annotated bibliog-
raphy here proposed. A sequel to [70], this work focuses pri-
marily on arc routing studies published from 2010 onwards.
With this in mind, and to avoid duplication, those studies
published prior to 2010 may be found in [70] or in [64].

It is well known that Arc Routing Problems (ARPs) aim
to identify the best way to traverse the links of a network
within some constraints. Depending on the defined objective
(to maximize or minimize), the function to be optimized, the
identified constraints, the network characteristics, and even
the number of service visits required for each link, a different
variant of the problem should be defined.

Plenty of water has passed under the bridge since the
first known ARP, involving the Königsberg bridges and
their possible traversal routes, was identified and solved by
Euler. An interesting historical perspective on arc routing
is found in [65]. Most recently, the ongoing evolution of
computers has been playing an important role in the study
of ARPs, not only because they are increasingly capable of
solving more realistic instances, but also by permitting the
development of ever more sophisticated methodologies capa-
ble of handling such difficult problems. Furthermore, these
emerging methodologies contribute to a steep increase in the
number of studies with real-world applications, such as post-
disaster operations, waste collection, snow plowing or salt
spreading, cash-in-transit, and meter reading, to name but
a few.

Among these new methodologies, the so-called matheuris-
tics emerge, combining integer programming models, even
those that used to be hardly solvable, with (meta)heuristics.
A recent survey of such approaches for routing problems was
conducted by Archetti and Speranza [16].
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TABLE 1. Initials and problem names.

Initials Problem name Initials Problem name

#-IF # with Intermediate Facilities L# Location #
#-MD # with Multiple Depots M# Mixed #
#-RP # with Refill Points MBPRPP Minimum Bound collected Profit RPP
#-TW # with Time Windows MMK-# Min-Max K-Vehicles #
ARCP Arc Routing for Connectivity Problem MO-# Multi Objective
ARP Arc Routing Problem O-# Open #
BCARP Bound overlapping mixed CARP OARP Orienteering ARP
C# Capacitated # P# Periodic #
CARP Capacitated ARP P-# Profitable #
CARPDD CARP with Deadheading Demands P-ARPM Profitable ARP with multiple services
CARPSD CARP with Stochastic Demands PC-ARCP Prize Collecting ARCP
CPP Chinese Postman Problem PL-ARP Profitable Location ARP
CE# Close-Enough # RPP Rural Postman Problem
Cl# Clustered # SARP Sectoring ARP
D# Directed # SCP Stacker Crane Problem
D-ARP Dissimilar ARP St# Stochastic #
DC# Distance Constrained # SyARP Synchronized ARP
Dy# Dynamic # TD# Time-Dependent #
GRP General Routing Problem TOARP Team Orienteering ARP
GRPP Generalized RPP U# Undirected #
H# Hierarchical # W# Windy #
K-# Multiple Vehicle #

Beginning with the simpler case, we identify the single
vehicle problems with references from 2010 onwards. These
problems involve only one vehicle, which must visit all the
links of a network, starting and ending at the same point,
the depot, within a minimum time (or cost or length). This
well-known problem, referred to as the Chinese Postman
Problem (CPP), is easily solvable over either undirected or
directed networks, whereas the mixed and windy cases are
NP-hard.

Although few CPP papers published since 2010 can be
found, many new ARPs are defined and presented, usually
inspired by real-world applications. This is the case of the
Close-Enough ARP, which identifies tours for meter read-
ings from a close enough distance by means of a handheld
or portable device; the Dissimilar ARP, suggested for a cash
collection application where dissimilarity is introduced to
prevent possible robberies; post-disaster operations to restore
network connectivity by removing debris from routes on
the aftermath of a catastrophe; and other applications such
as road marking and route planning for automated guided
vehicles.

Problems with maximization objectives are also usually
motivated by real case studies, as they better represent the
objectives of private companies where more service signifies
increased revenue, given some pre-defined constraints.

In considering multiple vehicles, each with a given capac-
ity, we then tackle the capacitated counterpart of the problem.
Although these multiple vehicle problems are difficult to
solve in comparison to the single vehicle versions, they may
better describe reality. This may well be the justification for
both the number of new studies and the imbalance between
single and multiple vehicle cases.

In an attempt to avoid ambiguity, Table 1 presents the
different names and acronyms for the problems addressed in
this annotated bibliography.

To distinguish between the characteristics of problems, we
will henceforth adopt a standard notation as detailed below.

All problems may be defined on a graph G = (N , A ∪ E)

with a set of nodes N and a set of links A∪E. Service demand-
ing nodes, that is, required nodes, if any, are represented by
node set NR ⊆ N , while AR ⊆ A and ER ⊆ E are, respec-
tively, the set of required arcs and edges, also called arc tasks
or edge tasks. If needed to guarantee connectivity, links in
A ∪ E may be deadheaded, that is, traversed without being
serviced. A homogeneous fleet of K vehicles is available at
a depot node 0 ∈ N , with a given capacity of W . We define a
vehicle route or tour as a closed walk, starting and ending at
the depot, and including services from some required links
of a network.

Figure 1 depicts different classes of ARPs and highlights
the unique characteristics that may have led to the differ-
ent problem types studied since 2010. Different colors and
borders denote different sets of characteristics. Data usu-
ally referring to network type, depot, the number or type of
vehicles is marked as such; the remaining groupings show
additional characteristics.

To assess the performance of methodologies and compare
results, benchmark instances have been published for several
problems, some of them available online. The correspond-
ing links are displayed in the Appendix (Table 9), together
with open source software links and references to instance
generators.

Our paper is organized as follows. Three major sections
classify studies into single vehicle problems, multiple vehi-
cle problems or applications. Single vehicle problems, in
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FIG. 1. Problems’ characteristics. [Color figure can be viewed at wileyonlinelibrary.com]

Section 2, are grouped according to the type of service
and are thus classified as a CPP, Rural Postman Problem
(RPP), General Routing Problem (GRP) or ARPs with profits.
Section 3 surveys multiple vehicle problems, beginning with
three subsections on the Capacitated ARP (CARP), namely
the Undirected CARP, the Mixed CARP and other variants.
Then, several multiple ARPs are discussed, with their ensu-
ing tactical and strategic problems. The GRP and ARPs with
profits conclude this section. Section 4 is devoted to appli-
cations: distribution and collection routes, outdoor activities,
post-disaster operations, road cleaning and marking.

Consistent with the names depicted in Table 1, Fig. 2
summarizes the problems here considered.

2. SINGLE VEHICLE ARC ROUTING PROBLEMS

In this section we consider ARPs with a single vehicle.
They consist of identifying a tour for a single vehicle, its
service beginning and ending at a single depot, and satisfying
some demand for the identified clients, which are continu-
ously spread along some links of a network. Part I of the recent

arc routing book by Corberán and Laporte [64] is devoted to
ARPs with a single vehicle, as will be noted henceforward.

This section splits surveyed works into four subsections,
namely, CPP, RPP, GRP and Arc Routing with Profits. The
main differences among these classes of problems are related
to the set of clients to be visited.

In a CPP, all links of a network must be visited at least
once, that is, ER ∪ AR = E ∪ A, to represent the route of a
postal carrier who needs to distribute the mail at all addresses
continuously spread along all the streets of a city network.
The RPP also originated for mail distribution, in this case in
rural areas where small, connected villages may each be sim-
ilar to a CPP. Alas, the postal carrier needs to distribute mail
at several villages, and therefore must travel among them
without distributing mail. Such links with no demand for
service are called deadheaded links. The RPP includes more
general cases, where links to be serviced are mixed with dead-
heading links. The main difference between RPP and CPP is
that in RPP the set of required links does not coincide with
the set of links in the network, that is, ER ∪ AR ⊂ E ∪ A.
The third subsection is devoted to the GRP, where clients are
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FIG. 2. Problems surveyed in this paper.

spread on edges and nodes, that is, ER ∪ AR ⊂ E ∪ A and
NR ⊂ N . Finally, the last subsection focuses on ARPs that in
some way include the profits obtained from performing the
services.

A recent paper on the complexity of ARPs is attributable
to van Bevern et al. [194]. The focus is on surveying sev-
eral computational complexity aspects for three base ARPs,
namely the CPP, the RPP, and the CARP, and also some
variants thereof. According to [194], the classical complex-
ity classification concerning NP-hardness is enhanced with
aspects of polynomial time approximation as well as with
parameterized complexity. This latter aspect is still a much
unplowed field in arc routing, with numerous and challenging
open research questions.

Leaving the discussion of complexity aside, each section
begins with the purer problem version, that is, with no
extra constraints, followed by problem extensions studied
from 2010 onwards. Such extensions may point to special
network characteristics (such as windy networks), extra con-
straints (e.g., constraints on time or on the order of services),
or even different objectives (e.g., maximization or multiple
objectives).

The characteristics of each problem, including some prob-
lems that are defined in Section 4, are summarized in Table
2, and the papers addressing each problem are also listed.

2.1. Chinese Postman Problem (CPP)

The Chinese Postman Problem (CPP) consists in the iden-
tification of a shortest closed tour that traverses all links of a
network at least once. This problem is polynomial-time solv-
able in the case of completely directed or undirected graphs,
while the mixed and windy cases are NP-hard.

Further to the problem definitions and complexity ques-
tions, van Bevern et al. [194] present the evolution of CPP
complexity studies. Beginning with classical complexity,
including some polynomial solvable cases, and moving on
to approximation algorithms, they reach parameterized com-
plexity. Challenges involving this latter issue were left open
and some of them were later answered by Gutin et al. [100],
proving the mixed CPP parameterized by the number of
arcs to be fixed-parameter tractable. Very recently, Gutin
et al. [101] have also proven the CPP on an Edge-Colored
(multi)Graph (ECG) to be polynomially solvable. In such
multigraphs each edge has a color, and it is said that a tour is
properly colored if no two consecutive edges share the same
color. A CPP tour on an ECG is therefore a properly colored
tour traversing each edge at least once.

Undirected CPP, that is, CPP over undirected networks,
is surveyed in [124]. Two models as well as a description
of the problem’s main features are presented. As it is well
known, on connected graphs and in the case of a non-Eulerian
graph, an optimal solution is identified by the set of edges that
need to be traversed twice. For Eulerian connected graphs,
that is, graphs where all nodes are of even degree, the CPP
solution coincides with the Eulerian closed tour including
all the graph edges. Directed and mixed CPP, that is, CPP on
respectively directed or mixed graphs, are considered in [68],
where authors describe models, heuristics and exact algo-
rithms. Linear programming (LP) relaxations of two detailed
models are compared.

Although the CPP itself is easy, there is still ongoing
research involving the number of extra edges or the best
way to find them. Recently, Suil and West [186] stud-
ied some properties of CPP solutions on 3-regular graphs
(multigraphs). A 3-regular graph is a graph where all nodes
share the same degree, it being equal to 3. Moreover, solving
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the CPP in a multigraph where all nodes have the same odd
degree value is equivalent to finding the shortest spanning
subgraph in which all nodes have an odd degree value. Suil
and West [186] prove the validity of some tight upper bounds
for the number of additional edges needed for 3-regular
graphs and for 3-regular multigraphs, identifying some cases
where the equality holds.

The CPP with start and end times imposed for servicing the
links is known as the CPP with Time Windows (CPP-TW).
This problem models some real-world applications related to
garbage collection or street sweeping, where services usually
may not be carried out at just any time of day. The survey by
Laporte [124] seems to be the only reference to this problem
from 2010 to date.

2.1.1. Windy CPP. Windy problems denote situations
where travel direction is an issue, affecting the edge travel
cost or time over undirected networks. A windy edge is thus
an edge with two different associated travel times, one for
each direction. These may be directly applied to traveling
times against or with the wind, or even uphill versus down-
hill directions. Although usually NP-hard, the Windy CPP
has some polynomial special cases, as over Eulerian networks
(e.g., Refs. 66 and 194).

Corberán et al. [68] spotlight the Windy CPP (WCPP),
which may be seen as a generalization of the Mixed CPP
(MCPP). Formulations, algorithms and some inequalities
that may be useful in branch-and-cut algorithms are detailed
in [68]. This chapter also summarizes the previous work
of Corberán et al. [66] with a branch-and-cut algorithm
for the WCPP. These authors present two new families of
facet-inducing inequalities and methodologies to identify and
separate violated odd-cut zigzag inequalities, to add to the
problem through a branch-and-cut procedure. A polynomial
time algorithm is also developed to identify maximal violated
inequalities. Upper bounds are computed via a new heuristic
method. The new sets of inequalities, together with the previ-
ously known ones, are proven to be Chvátal-Gomory with a
rank of up to two. The new inequalities lead to the complete
description of the WCPP polyhedron on graphs with up to
four nodes and ten edges. The algorithm proved to generate
good computational results with WPP and MCPP instances
with up to 3,000 nodes and 9,000 edges (and arcs, in the case
of MCPP).

2.1.2. Time-Dependent and Hierarchical CPP. In time-
dependent routing problems, the time needed to service a link
depends on the time of the day it is serviced, that is, of its
service start time. On some streets, for instance, collecting
parking meter cash takes longer during rush hour than at
other times of the day. The Time-Dependent CPP (TDCPP)
aims to identify a minimum time closed tour traversing each
link at least once.

Sun et al. [187], based on Tan et al. [190], present a mixed
integer model, which is nonlinear due to the time-dependent
functions. As previously, if travel time may be represented
by piecewise linear functions, the model can be linearized

through some additional variables. Solutions are generated
via a cutting plane algorithm, and if needed, the final LP solu-
tion is transformed into an integer one. A real-world example
based on the inspection of digital networks, as well as 90 ran-
domly generated test instances divided into three groups, is
used to assess the quality of feasible solutions generated. In
these instances, the number of nodes varies between 10 and
25, while the number of arcs varies between 20 and 60. The
effect of the valid inequalities added through the cutting plane
algorithm is also analyzed.

Hierarchical routing problems are slightly different and of
extreme importance in real applications such as snow plow-
ing or debris removal. Imposing constraints on the order of
service for some links (or clusters of links), for example, that
more important streets should be handled first, leads to better
handling of these problems. The objective of the Hierarchi-
cal CPP is therefore to identify a minimum cost tour, visiting
each of the links of a network at least once and in such a way
that a link in a higher hierarchical level is visited before all
links in lower hierarchical levels.

Panchamgam et al. [154] analyze the hierarchical CPP,
as well as the hierarchical traveling salesman problem, in
terms of worst-case behavior. Laporte [124] surveys undi-
rected Hierarchical CPP by presenting two algorithms and
a transformation into a RPP. New studies focusing on these
issues are frequently related to real-world applications and
will be more thoroughly discussed in Section 4. Among these
studies, we will emphasize those involving precedence con-
straints such as post-disaster operations (Section 4.3) and
road cleaning and marking (Section 4.4).

2.1.3. Other CPP Variants. Ding et al. [76] study a gen-
eralization of the mixed CPP that introduces lower and upper
bounds on the number of times each link is traversed. The goal
is to identify a minimum cost tour, beginning and ending at
the depot, traversing each link within its previously specified
bounds. Denoting by n the number of nodes, m the number
of links (all links, arcs and edges, are required), and by �0 the
minimum lower bound limit among all edge traversals, the

authors design an
(

1 + 1
�0

)
-approximation algorithm in time

O
(
n2m3logn

)
for instances with edges’ lower limits strictly

smaller than their respective upper limits, but allowing lower
and upper limits for arcs to coincide. Moreover, for problems
on undirected and directed networks, optimal combinatorial
algorithms with a complexity of O

(
n3

)
and O

(
nm2logn

)
are

presented.
Laporte [124] surveys the generalized and the cumulative

CPP, both defined on undirected graphs. In the generalized
problem, the set of edges is partitioned into several subsets,
and the aim is to find a minimum cost CPP tour contain-
ing at least one element from each partition. The cumulative
problem consists of determining an Eulerian tour, beginning
and ending at the depot, which minimizes the sum of service
completion on all edges. Thus, each edge traversed more than
once must be serviced during the first passage. Laporte [124]
details the best known model for this problem to date.
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Corberán et al. [61] define and study a CPP with load-
dependent costs where the cost of traversing an edge depends
not only on the edge’s length but also on the weight of the
vehicle’s cargo. This variant makes sense when the main con-
cern is to minimize pollution, given that at constant speed,
the most important measurable variables to explain pollution
emissions are distance and vehicle weight. The authors prove
the problem to be NP-hard and identify some polynomially
solvable cases. Two formulations are provided, one exploring
the nature of arc routing and another based on a transfor-
mation into node routing. Two metaheuristics are proposed,
an iterated local search and a variable neighborhood search,
including a constructive greedy heuristic to initialize both.
Computational experiments on three sets of instances gener-
ated or adapted by the authors are reported, and they attest
the extreme difficulty of this variant. The first set includes 18
Eulerian instances with 7, 10, and 20 nodes and 12, 18, and
32 edges, respectively. The second set of 18 instances has
11, 14, 17 nodes and 13, 32, and 35 edges, respectively. The
third set consists of 24 instances with up to 27 nodes and up
to 33 edges. The models fail to obtain the optimum in rea-
sonable computational time despite the small instance size.
The problem’s difficulty plainly justifies the development of
the proposed metaheuristics. These methods were then able
to produce good solutions in short computational times for
larger instances, with up to 30 nodes and 232 edges.

2.2. Rural Postman Problem (RPP)

Consider a connected undirected graph G = (N , E) and
a subset of required edges ER ⊂ E demanding service. RPP
consists of finding a minimum cost tour traversing all the
required edges at least once. The problem is generally NP-
hard, being polynomially solvable if the graph induced by ER

is connected. Ghiani and Laporte [93] survey undirected RPP,
while Corberán et al. [69] dedicate a chapter to the directed,
the mixed and the windy RPP.

The complexity of the RPP is analyzed by van Bevern et al.
[194]. The problem consists of identifying whether there is a
tour traversing all the required links at least once, while not
exceeding a given fixed given cost, cmax. The complexity of
the RPP is therefore obtained from the following parameters:
number of required links; number of connected components
induced by required links; number of imbalance nodes; cmax;
and number of non-required links in the RPP solution.

Archetti et al. [14] study the problem of re-optimizing an
RPP solution after some perturbation of an instance occurs.
Two perturbations are considered and are shown to be NP-
hard: (i) addition of a new required edge; and (ii) removal
of an edge (required or not). A heuristic with a worst-ratio
of 2 is presented for (i), while a tighter ratio of 3/2 may be
achieved for (ii) through simpler algorithms. Procedures deal-
ing with partial solutions, as well as perturbations in the initial
instances after a solution is found, may take advantage of such
procedures. Perturbation is very common in some real-world
applications, for instance, when orders are made or canceled.
Based on their computational experiments, over three sets

of instances for cases (i) and (ii) (derived from instances
CPS_ARP in Table 9), the authors claim that “results show the
nodal importance of re-optimization both in terms of quality
of the solution and efficiency of the computation” Instance
dimensions vary from 298 to 1,002 nodes and 206 to 2,305
required edges.

2.2.1. Undirected RPP. Holmberg [110] proposes heuris-
tics for undirected RPP while addressing a snow removal
problem (see Section 4.4.2). These methods begin with con-
necting the graph induced by the set of required edges at
minimum cost, then finding an Eulerian tour. The gener-
ated tour is then improved by means of some post-processing
procedures.

Ghiani and Laporte [93] examine some properties of undi-
rected RPP solutions, as well as mathematical models, exact
and heuristic algorithms. Some computational results are also
summarized.

2.2.2. Directed and Mixed RPP. Directed and mixed
RPP (DRPP and MRPP) are well detailed in [69]. With a
substantial background in these problems, the authors offer a
vital survey of MRRP models, followed by a study of the
corresponding polyhedra in which the authors revise and
explain several inequalities that are facet-inducing for the
MRPP models. A comparison between LP relaxation bounds
is also described. A transformation into a generalized trav-
eling salesman problem (GTSP) is discussed and was able
to solve instances with up to 500 nodes, 1,000 arcs (200
required), and 1,000 edges (25 required) in the original graph.
A cutting plane algorithm optimally solved instances with up
to 100 nodes, 220 edges (150 required), and 350 arcs (200
required). A branch-and-cut algorithm found the optimum in
instances with up to 1,000 nodes, 2,000 edges, and 2,000 arcs
within an average computational time of 30 minutes.

Further parameterized complexity analysis concerning the
RPP is attributable to Refs. 184 and 102. These studies
are based on Eulerian and matching extensions, as these
problems are closely related to the RPP. Sorge et al. [184],
expanding from Refs. 182 and 183, employ a parameterized
equivalence between the RPP and an Eulerian extension,
studying a variant of the minimum weight perfect match-
ing on bipartite graphs. The parameterization is related to
the number of weakly connected components in the graph
induced by required arcs. To this end, works such as [77]
(revised in [78]) or [73] (revised in [74]) are essential. Gutin
et al. [102] answered some open questions posed by Sorge
et al. [184] and raised some new questions concerning the
parameterized complexity of this problem.

2.2.3. Windy RPP. As previously mentioned, windy net-
works are undirected networks in which traversal time (cost)
associated with each required edge differs with the direction
of its traversal. The Windy RPP (WRPP) consists of identi-
fying a minimum time tour that travels from and back to the
depot while servicing all the required edges of a windy graph.
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Corberán et al. [69] present a formal definition of the prob-
lem, an integer LP model, and heuristic and exact procedures.
A summary of the principal results over some benchmark
instances with up to 1,000 nodes, 4,000 edges, and 200 con-
nected required components is also provided. Within a time
limit of 10 hours, 510 out of the 522 instances were optimally
solved with a branch-and-cut algorithm. A branch-and-price
was tested on smaller instances, with up to 100 nodes and 184
edges, optimally solving all but three of the 198 instances.
Heuristic results are also reported for the larger instances,
producing good gap values in short computational times.

A new generalization of this problem, christened arc rout-
ing with meander option, was suggested by Golden [95].
Golden considered that narrow streets with light traffic may
be serviced (and often it is desirable to do so) along both
sides with a single pass in a zigzag fashion, that is, a mean-
der, in one direction. On the contrary, on wide streets with
heavy traffic, each side must be serviced on a different pass,
and thus meandering is not allowed. The mixed windy RPP
with the meander option is then defined. Some real-world
applications are identified, such as garbage collection, meter
reading, and local delivery.

In a later paper, Nossack et al. [152] tackle a similar prob-
lem, which they name the WRPP with time-dependent zigzag
services. The authors consider that during certain times of
the day some edges may be serviced in a zigzag fashion. This
option may be applied to narrow streets with low traffic inten-
sity. Larger streets or streets with high traffic intensity must
be serviced on two single traversals. Thus, it is imposed that
some streets may be zigzagged at specific times of the day, for
example, in the early morning when not much traffic exists,
and TW are set for these cases. Garbage collection may rep-
resent one real application of such situations. Nossack et al.
[152] discuss two mixed integer programming formulations,
suggest exact solution approaches, and state that “this is the
first paper to present models and solution approaches for an
ARP that combines zigzag options and time-dependencies”.
Formulations are based on a transformation into an equiva-
lent node routing problem on a directed graph. Sensitivity of
the solution value to zigzag and time window options is also
analyzed in the computational results. The authors transform
a street map from Columbia, Maryland, into a directed net-
work with 171 nodes and 994 arcs (the initial network had
407 nodes and 1,578 arcs), from which they derive real-world
instances supported by real data. These 20-node instances
have an average of 56 arcs (24 required). Zigzag options,
which were not pre-existing, were randomly generated, and
three types were considered, namely: (i) edges with a required
zigzag that may be serviced in any direction but only once
by zigzagging; (ii) links with a zigzag option that can be
serviced once if zigzagging or on two normal traversals oth-
erwise; and (iii) links with a zigzag time window that may
only be serviced by zigzagging during the predefined time
window. For all segments with a zigzag option, it is assumed
that it is better to zigzag in at least one direction. Nossack et
al. [152] conclude that “the zigzag time can be relatively large
and yet still offer cost-saving opportunities” and that “time

windows dramatically increase the difficulty level of the prob-
lem.” Since no optimums were found for all instances, the
authors emphasize the need for a deeper study involving one
of the models, which could improve the efficiency of cutting
plane algorithms.

2.2.4. Generalized and Close-Enough RPPs. The Gen-
eralized RPP (GRPP) aims to identify a minimum cost tour,
beginning and ending at the depot, which traverses at least
one arc from each subset of a family of previously defined
arc subsets. This family of arc subsets needs not be disjointed
or induce connected subgraphs. This problem, introduced in
the 2007 PhD thesis by Drexl and defined on directed graphs
with no fixed depot, gave rise to the work published in [80].
Since the problem reduces to the DRPP when each subset
of arcs includes only one arc, Drexl refers to it as a strong
NP-hard problem.

The GRPP is equivalent to the Close-Enough ARP
(CEARP), which was first defined for the directed case (see
Refs. 105 and 69). In the CEARP, instead of needing to ser-
vice every customer at its link location, a vehicle may also
service customers residing outside the network as long as the
customers are reachable from a link at a “close-distance,”
that is, if an arc within a distance up to a fixed given value is
traversed by the working vehicle. The CEARP then consists
of finding a minimum cost tour, beginning and ending at the
depot, such that every customer is covered by the tour, that
is, lies within a limited distance from at least one arc in the
tour. We observe that the CEARP is equivalent to the GRPP
(see Ref. 105) if we consider the arcs covering each customer
in the CEARP as a subset (or a cluster) of the family of arc
subsets in the GRPP.

This problem has a direct application for the routing
of meter readers that use new technology, such as hand-
held devices with radio frequency identification technology,
allowing utility meters to be read from a maximum distance.
Thus, there is no need to actually visit every customer. Rather,
if the meter reader gets within a given radius of a customer,
that is, if it gets close enough to the customer, it may read
the customer’s meter. Meter readers then only need to visit
the links that are close enough. According to Hà et al. [105],
an “effective radius, also called the read range, is normally
between 150 and 300m but may be as high as 381m.” As
a related new application of the CEARP, Fernández [85]
quotes the quality control standard for network maintenance
in which only a small subset of the edges of a network must
be traversed.

Drexl [80] explains how to model several types of single
vehicle problems as GRRPs on directed networks (referred
to as GDRPP). These are relevant for practical applications.
Drexl considers several real-world constraints, such as turn
penalties, street segment sides, zigzag servicing, deadhead-
ing and service costs within windy graphs, open tours, and
delivery sections. An integer LP formulation is presented.
Solutions are identified using CPLEX to solve the relaxed
model without subtour elimination constraints. The violated
constraints are then identified and added to the model, using

NETWORKS—2017—DOI 10.1002/net 153



maximum flow algorithms. A second heuristic procedure
resorts to a transformation into a GTSP and applies a memetic
heuristic with a competitive behavior for the GTSP, accord-
ing to [80]. Performance of the procedures was assessed over
two sets of instances: (i) 420 GDRP instances that resem-
ble real-world mail delivery problems in structure and size,
with up to 420 nodes, 1,776 arcs and 196 r-groups, that is,
groups of arcs where at least one arc must be visited; and
(ii) 850 well-known benchmark instances for the undirected,
mixed and windy RPP and for the GRP (instances CPS_ARP
in Table 9), with up to 1,001 nodes, 5,046 arcs, and 1,332
r-groups. The results, although not competitive against the
best known, lead to some interesting points of research. As
the author states, “the aim here was not to try to compete with
the high sophisticated algorithm developed (...), but to evalu-
ate the general usefulness of both the exact and the heuristic
algorithm. The reported results verify this usefulness and sug-
gest further study of the GDRPP. Possible research avenues
are outlined.”

Hà et al. [104] propose an integer linear programing model
for the CEARP, which is solved using a cutting plane method.
This model first solves the relaxed problem without connec-
tivity constraints, which are iteratively added while needed,
that is, while still violated. Several instances imitating real
street networks are randomly generated to assess the qual-
ity of the method. Authors claim their algorithm is capable
of solving realistically sized instances and that its perfor-
mance improves as the number of customers increases. In
later work, the same authors [105] compare a newly proposed
model with two other existing models created by Hà et al.
[104] and Drexl [80]. Some valid inequalities are derived,
and the proposed branch-and-cut is evaluated with instances
based on directed, undirected, and mixed graphs. Instance
sets include: (i) randomly generated for directed graphs by
Hà et al. [104], with 500 nodes and 1,000 or 1,500 arcs; (ii)
undirected (with up to 196 nodes and 316 edges) and two
mixed (one with 500 nodes, 364 edges and 476 arcs; the
other with 351 edges and 681 arcs) graphs based on bench-
mark graphs (instances CPS_ARP in Table 9). The authors
conclude that their algorithm is the best choice in the case of
directed and undirected graphs, while [80] seems to be the
best option for the mixed case. In fact, better bounds are gen-
erated through enormous branch-and-bound trees. Ávila et al.
[23] introduce two new formulations for the GRPP as well
as several new families of valid inequalities that are essential
for inclusion in a new branch-and-cut procedure. The poly-
hedron of solutions associated with one of the models is also
studied. This study provides and analyzes better results than
those of [105]. Instance sets, as well as the obtained results,
are available online (see instances CPS_ARP in Table 9).
Five sets of instances were used and are characterized by:
(i) directed networks with 500 nodes, up to 1,500 arcs, and
500 to 15,000 customers as proposed by Hà et al. [105]; (ii)
four instances for each of the two mixed networks of [105];
(iii) with the number of nodes varying between 298 and 499
and the number of arcs between 597 and 1,526; (iv) with
the number of nodes varying between 452 and 749 and the

number of arcs between 915 and 2,314; and (v) with the num-
ber of nodes varying between 605 and 1,000 and the number
of arcs between 2,289 and 3,083. All instances in the first
and third sets, all but one in the second set, and all but two
in the fourth were optimally solved in short computational
times. In the fifth set, however, only two out of twelve were
optimally solved. The authors conclude that their “algorithm
outperforms the existing exact methods.” The final contribu-
tion of this paper is a new formulation with fewer variables,
which deserves further attention.

Aráoz et al. [8] also focus on the GRPP on undirected
networks. This paper culminates the work that has been devel-
oped and presented in some worldwide conferences, from
ROUTE 2011 or IFORS 2011 to WARP1 or TRISTAN 2013
[85]. An integer programming model with only binary vari-
ables is suggested. Some dominance conditions with respect
to the solutions allow improvement of the formulation. The
associated polyhedron is tackled via facets and families of
valid inequalities, and the separation problem for the families
of valid inequalities is also studied. Solutions are generated
through a two-phase algorithm. In the first phase, a branch-
and-cut is applied to solve the LP relaxation of the improved
model. Then, at each iteration, the LP model is reinforced
with the addition of valid violated inequalities. The second
phase is applied only when the first phase fails to identify
a probable optimal solution. It then resorts to CPLEX to
solve the improved exact model. Performance of the method
was assessed over three sets of instances: two previously
known sets (instances CPS_ARP in Table 9), and one new
set of 20 instances with 300 nodes and up to 613 required
edges from a total of 43,000–45,000 edges. The impact of
the instance dimensions is reflected in the CPU run times.
The authors conclude that a deeper analysis of the relation-
ship between the number of edges and clusters would be
helpful.

One new and interesting variant of the CEARP is its
stochastic version, recently introduced by Renaud et al. [163],
in which “the stochasticity lies in the uncertainty of collect-
ing data due to failed transmissions.” The probability of a
successful meter reading is computed as a function of the
distance between the customer and the tour assigned to the
corresponding operator. An integer nonlinear formulation
for the Stochastic CEARP (StCEARP) is presented, where
probabilities associated with each arc/customer pair indicate
whether a customer’s meter may be read from a given arc (or
its reversal arc). The CEARP tour should be chosen to guar-
antee a minimum fixed probability of a successful reading
for each customer. An exact method based on a cutting plane
algorithm is developed, involving two modules: a preprocess-
ing phase to reduce the size of the formulation, and several
primal heuristics to search for feasible solutions in each iter-
ation of the cutting plane. The study builds 240 instances that
are similar to those of Hà et al. [104] and Hà et al. [105] (with
300, 400 or 500 nodes and 625 to 10,000 customers, each ser-
viced by 4.5 to 15 arcs out of 450 to 1,500 total arcs), and some
new instances that consider larger reading ranges for cus-
tomers. Renaud et al. [163] conclude that the preprocessing
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step is important, not only for reducing the instance size but
also for producing better lower bound values.

2.2.5. Time-Dependent and Hierarchical RPP. The
Time-Dependent RPP (TDRPP) is an RPP variant that
involves time-dependent service times, that is, the service
time for a link depends on the time its service initiates. A
vehicle tour must then be defined so as to minimize the total
time of servicing all the required links.

Although it shares some similarities with established RPP
variants, namely, the RPP with TW (RPP-TW) and the RPP
with Deadline Classes (RPP-DC), the TDRPP introduced by
Tan et al. [190] is a new problem. It differs from the RPP-TW
in that although service times are time-dependent, service
is not restricted to TW. The TDRPP also differs from the
RPP-DC, as the TDRPP does not have deadlines for ser-
vice completion or divide required links into deadline-based
classes.

Tan et al. [190] present a mixed integer model that is non-
linear due to time-dependent functions. If travel time may be
represented by piecewise linear functions, the model can be
linearized through some additional variables. Solutions are
generated via a cutting plane algorithm that begins with the
resolution of a relaxed LP and then iteratively identifies vio-
lated constraints to be added to the model. Lastly, if needed,
the LP solution is transformed into an integer solution. Ran-
domly generated test instances (with up to 25 nodes and 50
arcs, and a percentage of required arcs ranging from 30 to
70%) were used to assess the quality of the feasible solutions
obtained. Although poor gap values are reported, the effect
of the facet-inducing inequalities is analyzed.

Although this work is discussed in the Windy RPP Section
(2.2.3), it also bears mentioning here that Nossack et al. [152]
contribute to the ongoing work on time-dependent functions
by linking the issue of time dependency to zigzag options and
windy graphs.

Another RPP variant related to traversal times or orders is
the Hierarchical RPP (HRPP), where services must respect
some priority levels, that is, previously identified hierarchic
orders. The inclusion of these priority levels adds new chal-
lenges to the basic RPP. The required links are divided into
clusters that must be serviced in a hierarchical order, that is,
a vehicle tour must service all required links in a higher hier-
archical level before servicing those in lower levels. In an
HRPP, each link has three traversal-associated costs: (i) costs
prior to servicing; (ii) the service cost; and (iii) costs after ser-
vicing. As usual, problems are classified based on whether
they involve directed, undirected or mixed networks. Appli-
cations for the HRPP include, for instance, street cleaning or
snow plowing, where main streets need to be cleaned prior to
secondary ones and only a subset of the links requires service.
In this case, deadheading a street after cleaning has a rela-
tively low associated traversal cost, while cleaning the street
takes more time, and traversing the street before cleaning
takes the most time.

Other recent work with the Hierarchical RPP comes from
Refs. 56 and 57, who address the mixed case, which is

NP-hard as it generalizes the mixed RPP. Colombi et al. [56]
propose a new mathematical model, a matheuristic and a tabu
search algorithm. The matheuristic wraps the solution of a
variant of the mixed RPP, the open mixed RPP, for each hier-
archy. The solution for each hierarchy involves finding the
minimum cost path that services all links in the hierarchy,
starting at the depot and ending at a fictitious sink node. All
nodes in the hierarchy are linked to this sink, with costs com-
puted from the shortest paths between this hierarchic level and
the subsequent one. The tabu search approach initiates with
the solutions provided by the matheuristic, then innovates on
the improvement and on the diversification strategies, which
are analyzed in the computational tests. The solutions gen-
erated by this procedure are compared with those from a
branch-and-cut algorithm, using the proposed model without
connectivity constraints. These are then iteratively identified
and added to the model, while needed. Computational tests
with CPS_ARP instances (Table 9), obtained by modifying
benchmark instances for the MRPP and the MGRP, show
the relationship between the number of hierarchies and the
hardness of instances. The matheuristic “deserves to be con-
sidered as a stand-alone method providing very good results
in all classes of instances.”

In [57], a deep polyhedral analysis dealing with the for-
mulation of Colombi et al. [56] gives rise to an improved
branch-and-cut procedure. This study has led to the identifi-
cation of several classes of valid inequalities and conditions
under which the induce facets of the associated polyhedron.
The use of such inequalities in a branch-and-cut procedure
led to very good results, finding 198 optimal values out of
264 benchmark instances of [56], with optimal solutions for
instances with up to 999 nodes, 2,678 links and five hierar-
chic levels obtained in a CPU time of less than one hour. As
authors have reason to conclude, “...producing an effective
exact method for a hard combinatorial optimization prob-
lem benefits from a good understanding of its associated
polyhedron.”

2.2.6. Other RPP Variants. The Periodic RPP (PRPP)
is the RPP defined for a time horizon where services must
be performed with a given periodicity. The PRPP may then
be considered as a repetition of several RPPs, one per period
in the time horizon. It has a natural application for repetitive
actions such as weekly garbage collection. Since it combines
several RPPs, the PRPP is also NP-hard.

Ghiani and Laporte [93] and Corberán et al. [69] discuss
some variants of the RPP. Ghiani and Laporte [93] surveyed:
the RPP with multiple edge services, including a period hori-
zon where edges must be serviced more than once, which may
be seen as a PRPP; the RPP with deadline classes, where ser-
vice on the edges in each class must be completed within a
given time limit; and the dynamic RPP, where the base graph
changes dynamically. This last variant was suggested by a
real case study related to industrial cutting.

Corberán et al. [69] discuss the following RPP variants: the
stacker crane problem, related to the movements of a crane
during service; the RPP with turn penalties, where some turns
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are dangerous and must be penalized if not forbidden; the
clustered RPP, where the edges are divided into clusters and
each cluster must be serviced jointly, that is, the edges of
each cluster must be all serviced before moving to another
cluster; and the windy RPP with zigzag services, where edge
costs may be different depending on direction and some can
be serviced using a single zigzag passage.

Another RPP variant recently studied in the literature
is the stochastic Eulerian tour problem, which concerns a
tour traversing each link exactly once, of minimum expected
length, on an undirected, connected, Eulerian and stochastic
graph. The stochasticity is related to a probability associ-
ated with the need to service each edge. Thus, the number
of required edges on a specific day is represented by a ran-
dom variable. This may be seen as an ARP on undirected
and Eulerian graphs, that is, graphs where an Eulerian tour
with stochastic demands may be identified. For non-Eulerian
graphs, the first step in solving an ARP is often to transform
the graph into an Eulerian one. Mohan et al. [147] develop
three constructive heuristics for this NP-hard problem. The
first heuristic iteratively adds to the end of the tour in con-
struction the required non-visited edge that least increases
the expected total length of the tour. The second proceeds in
a similar way, but it adds only non-visited edges that are
linked with the last edges included in the tour. The third
constructs several small subtours that are iteratively mixed
using an expected savings criterion. A post-optimization pro-
cedure is also adapted. Mohan et al. [147] cite mail delivery
by Canada Post as an application of this problem, since the
postal carrier first collects the mail to be delivered from relay
boxes at various points along the route. Thus, the required
edges where mail must be distributed are known only after
the postal carrier begins traveling the route, and starting
routes should incorporate the stochasticity of the problem.
The postal carrier follows the route but has some flexibility
to skip streets, if needed. Two sets of randomly generated
instances (on grid networks with up to 174 required edges
and on Euclidean graphs with up to 153 required edges) were
used to determine which heuristic to choose (the third is
better for some instances, and the second is better for the
remainder).

2.3. General Routing Problem

General Routing Problems (GRPs) generalize ARPs as
well as Node Routing Problems (NRPs) by considering both
required links and required nodes. That is, some services
need to be performed along the links of a network, while
others are to be performed on nodes. One example may be
a waste collection problem mixing door-to-door household
refuse collection with the collection of larger containers that
are distant from each other and from neighborhoods with
door-to-door collection. The objective of the GRP, then, is
to identify a minimum cost tour, beginning and ending at the
depot, servicing all required links and all required nodes. This
problem, when defined on a mixed graph, is also known as
the Node, Edge, and ARP (NEARP).

Ávila et al. [21] study the Stacker Crane Problem (SCP) as
a special Directed GRP (DGRP) case on the original graph,
that is, with no need to remove all the non-required nodes. The
objective of the SCP is to schedule the maneuvers of a crane
that starts at an initial point, performs a set of movements, and
returns to its initial position, at minimum total cost. The study
derives a polyhedral description and some large families of
facet-inducing inequalities for the DGRP, and it also details a
branch-and-cut algorithm for both problems. This algorithm
provides optimal solutions for large-sized instances, which
justifies the authors’ statement that “our algorithm is among
the best solution procedures proposed for both problems.”
DGRP instances were generated to try to imitate street net-
works, with 500 nodes and 1,166–1,535 arcs; 700 nodes and
1,788–2,376 arcs; or 1,000 nodes and 2,342–3,177 arcs. New
SCP instances were also generated and are available online
(see instances CPS_ARP in Table 9). These are grid instances,
50 × 50 or 100 × 100, where the number of jobs varies from
100 to 3,000.

2.4. Arc Routing Problems with Profits

Maximization problems are increasingly used as an aid to
vehicle tour design for private companies, which aim to max-
imize profit given a minimum desired quality of service. The
recent proliferation of such studies justifies their treatment in
their own section.

In Chapter 12 of [64], Archetti and Speranza [17] survey
ARPs with profits. These problems differ in their objective
functions as well as in some side constraints. Taken from real-
world studies for private companies, the scenario involves
the company receiving a premium for each link serviced.
Since vehicles have either a limited capacity or an imposed
time limit, not all demand links can be serviced. The goal
then becomes to identify which links to service and deter-
mine the associated tour (including the depot) that optimizes
a given objective function, considering the collected profit
and/or travel cost. Thus, and contrary to what usually hap-
pens in an RPP, the customers to be serviced must be chosen
from a larger set of potential customers.

Archetti and Speranza [17] identify two classes of the RPP
with profits: the Profitable RPP (P-RPP), also known as the
Prize-Collecting RPP or Privatized RPP, and the Orienteer-
ing ARP (OARP). All of these problems aim to generate a
tour beginning and ending at the depot and including some
required links. In the P-RPP, the objective is to maximize net
profit, given as the difference between the collected profit and
the traversal cost. Profit may be collected once, at most, from
any given link. The objective of the OARP is to maximize the
total collected profit for a tour within a given, limited travel-
ing time. In this survey, Archetti and Speranza [17] present
a formulation and refer to some studies regarding solution
procedures for both the P-RPP and OARP classes.

In a later study, Benavent et al. [32] introduce the problem
of minimizing total travel cost while guaranteeing a minimum
collected profit. Although these authors name this the Prize-
Collecting RPP, we are renaming it the Minimum Bound
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TABLE 3. Terminology for arc routing problems with profits.

Problem Objective functions Constraints

Name Max Max Min Multiple Travel Time Min. Collected
Initials proposed (profit) (profit-cost) (cost) services Limit Profit Observation

OARP Orienteering ARP � �
P-ARP Profitable ARP �
ClP-ARP Clustered P-ARP � Tasks are clustered, and for

a given cluster all tasks
or none are serviced

MBPARP Minimum Bound
collected Profit ARP

� �

P-ARPM Profitable ARP with
multiple services

� � A limit is given for the
number of times that
profit can be collected

PL-ARP Profitable Location ARP � Includes facilities location
at arc end nodes

TDP-ARP Time-Dependent P-ARP � � Multigraph to allow
multiple services

Undirected, Directed, Mixed or Windy graphs may be emphasized by the respective initial (U, D, M, W) before the name (for instance, the mixed P-ARP is
represented as MP-ARP).

collected Profit RPP (MBPRPP), for the sake of coherence
with previous classification of node routing problems and
in keeping with what seems to be the most common classi-
fication of arc routing works. In fact, some confusion still
exists regarding the terminology of arc routing with profits,
as pointed out by Archetti and Speranza [17]. In Table 3,
we make a new attempt to build a common terminology by
adding some new names to the set used by Archetti and Sper-
anza [17] for the single vehicle case. We construct a similar
table for the multiple vehicle case (Section 3.9).

In addition to discussing the MBPRPP, the recent paper
by Benavent et al. [32] also proposes flow-based models for
several ARPs with profits. While sharing the same set of
constraints, these models differ in the objective functions
considered, as well as in some sets of additional constraints.

It should be noted that whenever profits are being col-
lected, the set of tasks is often partitioned in two: the manda-
tory tasks, which must be completed; and the optional ones,
which may be completed if it pays off, that is, if it is profitable.
Moreover, whenever optional tasks are considered, a penalty
cost may be incurred if no services are ultimately provided.

2.4.1. Orienteering Arc Routing Problem (OARP).
With the aim of studying bicycle trips within a target dis-
tance, Souffriau et al. [185] embraced the Orienteering ARP
(OARP), in which profit is measured by the number of arcs
and the limit constraint refers to an upper bound on the total
cost (or distance) of the tour. A model is provided, as well as
a metaheuristic capable of producing good feasible solutions
in quite short computational times. With the central focus
on two real cases, namely, “an on-line cycle route planning
application that offers personalized cycle routes based on user
preferences, and an SMS service that provides cyclists ‘in the
field’ with routes on demand,” this study is further detailed
in Section 4.2.

Benavent et al. [32] propose a flow-based compact model
for the mixed OARP (MOARP), including time limit and/or
capacity constraints for the vehicle. Benchmark instances
from the literature have led to 476 adapted instances (with
up to 428 nodes; 789 arcs, 149 of which are mandatory and
160 optional; and 223 edges, 168 of which are mandatory and
150 optional) assessing the model performance. With 406 out
of 476 optimum values, and with very small gap values, the
model behaved well. Moreover, even its linear relaxation was
able to provide good bounds.

The directed problem is also studied by Archetti et al.
[11] using large families of facet-inducing inequalities in a
branch-and-cut algorithm. Solutions generated by the lin-
ear relaxation of the model are converted into feasible
OARP solutions by means of a minimum cost network flow
problem. This heuristic is used through the branch-and-cut
method and provides good lower bounds that help prune the
nodes of the branch-and-bound tree, allowing for its faster
convergence. Several instances (with 100–2,000 nodes and
7,000–14,000 arcs) were generated, and small benchmark
instances for the TOARP (multiple OARP) were also tested.
This methodology allows for the optimal solving of the larger
instances within one hour, and many were solved within a few
minutes.

2.4.2. Profitable Arc Routing Problem (P-ARP).
Archetti et al. [15] address the problem of including some
nearby customers on a route only when it is worthwhile to
do so. In this scenario, some customers are fixed and must be
serviced, while others are to be chosen within the imposed
constraints and with the goal of maximizing the difference
between the profit and the travel cost. This travel cost also
includes a penalty cost when a customer is not serviced. The
directed case, that is, the Directed Profitable ARP (DP-ARP),
is considered, and an integer LP formulation is given. Feasible
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solutions are generated within an ILP-refined tabu search
procedure. Beginning with a standard tabu search, a greedy
heuristic is first used to find an initial solution. Then, itera-
tively, it moves to neighbor solutions, where re-optimization
and intensification procedures are proposed and employed
to explore the neighborhoods. A diversification strategy is
also applied whenever a neighborhood has been thoroughly
explored, after which an ILP-refinement is applied. Based on
the characteristics of the solutions identified through the tabu
search procedure, the set of vertices is partitioned into: good
(likely to be visited); bad (not to be visited); and ambiguous
(remaining vertices). A tour including all the good vertices
is then identified, and ambiguous vertices are inserted in this
tour via the resolution of an ILP problem that chooses posi-
tions that minimize the insertion cost. A branch-and-cut with
a fixed time limit is also used to obtain lower bounds for the
problem. From a benchmark set of instances, 172 instances
were generated and are available online (see Brescia_Inst,
Table 9). In these instances, the set of nodes ranges from 7 to
140 and the number of required arcs from 3 to 203. The cor-
responding results “show the effectiveness of the proposed
solution method and the positive impact of the ILP model on
the solution quality.”

For this same problem, Colombi and Mansini [58] pro-
pose inequalities that are added to the existing model of
[15] within a branch-and-cut algorithm. These new inequal-
ities strengthen both the LP relaxation of the problem and
the relaxed version without the connectivity constraints. A
matheuristic followed by an improvement heuristic is also
developed. At each iteration of the matheuristic, a DRPP is
solved to optimality for a new subset of required arcs. Then,
as in [15], a refinement procedure involving a branch-and-
cut algorithm tries to improve the best solution generated by
the matheuristic, which quickly converges from imposing the
connectivity constraints. These two different constraints are
referred to as the standard way (via the resolution of the max-
flow separation problem), and the lazy way (where subtours
are eliminated only when an integer solution is found). The
authors stress that this refinement heuristic may be used by
itself. From the results obtained over the same set of instances
as [15], the authors conclude “that heuristic methods are
extremely effective outperforming existing algorithms.” The
best choice is to combine the reinforced model with the lazy
separation of the connectivity constraints within the branch-
and-cut. The authors also emphasize that the “exact method
is able to close, in less than one hour, all the 22 benchmark
instances that have not been solved to optimality yet,” which
is a promising result.

As for the OARP, Benavent et al. [32] propose a flow-based
compact model for the mixed P-ARP (MP-ARP), including
time limit and/or capacity constraints for the vehicle. Bench-
mark instances from the literature have led to 486 adapted
instances (with up to 428 nodes; 789 arcs, 149 of which are
mandatory and 160 optional; and 223 edges, 168 of which
are mandatory and 150 optional) to assess the performance
of the model. With 438 out of 486 optimum values, in short
computational times, and with very small gap values for the

remaining instances, the model seems to be a good option in
medium-sized instances. However, the upper bounds of the
linear relaxation are generally not good.

Windy undirected graphs within a P-ARP are studied by
Schaeffer et al. [175] and Ávila et al. [20]. Schaeffer et al.
[175] offer an ant colony algorithm starting with an empty
tour. This is iteratively extended following some preferred
neighbors and according to characteristics including the num-
ber of visits to links and nodes and the computed pheromone
per link. Four sets of RPP and GRP benchmark instances
described by Corberán et al. [62] are adapted to this Windy
Profitable ARP (WP-ARP). Computational results show that
the heuristic usually generates profitable closed tours in less
than half a minute in instances with up to 196 nodes and 632
edges. No comparison with other procedures is provided, as
this is the first work on the WP-ARP.

More recently, Ávila et al. [20], pursuing the optimal
solution of the WP-ARP, have developed a branch-and-cut
methodology. It begins with the study of the polyhedron
associated with the proposed model. Several families of facet-
inducing inequalities are detailed and exploited through a
branch-and-cut algorithm. The computational results outper-
form those of [175]. Large-sized instances were generated
(see CPS_ARP in Table 9), and instances with up to 1,000
nodes and some with 1,500 nodes were optimally solved,
and in reasonable computing times. As possibilities for
future research, the authors point to the development of
new valid inequalities, the design of more efficient separa-
tion algorithms for some of the inequalities derived, and the
improvement of heuristic algorithms.

2.4.3. Profitable ARPs with Multiple Services (P-
ARPM). The Maximum Benefit CPP (MBCPP) deals with
profitable problems allowing multiple services and was tack-
led by Corberán et al. [67]. This study considers several
benefits associated with each edge, one for each turn the edge
is serviced, and several traversal costs per edge. A deadhead-
ing cost is also associated with each edge. The objective is
to find a tour with maximum total net benefit. Having the
RPP as a special case, the MBCPP is an NP-hard problem.
The authors propose a formulation for the undirected case
and a branch-and-cut algorithm from the description of its
associated polyhedron. This description comes from several
families of valid facet-inducing inequalities. Heuristics and
exact procedures for the separation problems are also pro-
posed. The performance of the procedure is analyzed over
ARP instances (see CPS_ARP in Table 9) with up to 1,000
nodes and 3,000 edges. This problem was also referenced
in [17] and is a particular case of the Profitable ARP with
Multiple Services (P-ARPM).

2.4.4. Clustered Profitable Arc Routing Problem (ClP-
ARP). Corberán et al. [62] introduce a new ARP variant,
the Windy Clustered Profitable Postman Problem (WClP-
ARP). As in the P-ARP, profit is collected only once if and
when the edge is serviced, no matter the number of traver-
sals on the edge. Edges are partitioned into clusters, and if a
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required edge is serviced, all the remaining edges in the same
cluster must also be serviced. This study contains a mathe-
matical model and some polyhedral results including several
facet-defining and valid inequalities. The separation problem
for the different families of inequalities is studied, and both
exact and heuristic algorithms are provided to identify such
inequalities. This paper is the first in the literature to deal
with windy and clustered ARPs including profits. The clus-
ter version in particular is worthy of more than just theoretical
interest, since profit problems are key for private companies.
In some real-world applications, such as those arising from
privatization of garbage collection or postal services, it makes
no sense to serve a customer if the whole neighborhood is
not profitable. In the case of refuse collection, for instance,
it is not reasonable to collect the refuse on alternate streets,
or even in a small part of a neighborhood. This justifies the
identification of clusters. Four sets of benchmark instances
for the RPP and for the GRP were adapted to the WClP-ARP
(with up to 196 nodes and 316 edges, of which up to 238
are required), and reported results show the effectiveness of
the algorithm in solving medium- and large-sized instances
in short computational times.

Also working in response to the clustered problem but on
undirected graphs, Araoz et al. [7] propose a GRASP (Greedy
Random Adaptive Search Procedure) and path relinking
heuristic for the ClP-RPP. Despite the good results obtained
by the branch-and-cut procedure of [62], heuristics are always
important where NP-hard problems are concerned, as in the
case of the ClP-RPP. In this paper, two different constructive
heuristics are proposed, based on the resolution of an RPP for
each cluster defined from different sets of selected customers
and the corresponding clusters. The heuristics differ in the
way that suitable clusters are selected for servicing. The first
heuristic is bottom-up, as clusters are selected and inserted
step by step. The second heuristic is top-down, as it starts
by including all the clusters, which are then removed step by
step. The path relinking phase works as a post-optimization
procedure between pairs of solutions from a pool of elite
solutions. Computational results over benchmark instances,
including those of [62] (with up to 196 nodes and 316 edges,
of which up to 238 are required), show these metaheuristics to
be competitive and produce very good results in rather small
computing times.

2.4.5. Minimum Bound Collected Profit Arc Routing
Problem (MBPARP). Benavent et al. [32] introduce the
Minimum Bound collected Profit ARP (MBPARP), which
aims to minimize the total travel cost by imposing a minimum
profit to be collected. This minimum profit is imposed for per-
forming some service while minimizing cost. The objective,
then, is to identify a tour, beginning and ending at the depot
that minimizes total cost while servicing all mandatory links
and some optional links in order to attain the profit threshold.
Again, the name of the problem is herein changed in keeping
with the terminology shown in Table 3. As for the remaining
profitable problems studied in this paper and already reported
on, a compact flow-based model is proposed. From the usual

benchmark instances, 486 instances were adapted (with up
to 428 nodes; 789 arcs, 149 of which are mandatory and 160
optional; and 223 edges, 168 of which are mandatory and
150 optional). Results point to weak LP bounds but to good
model performance, since a majority of instances were opti-
mally solved. As expected, higher values of the minimum
imposed profit lead to worse results. Even so, if 50% profit
for all optional links is imposed as the minimum value, then
439 out of the 486 instances are optimally solved, and gap
values are very small.

2.4.6. Time-Dependent Profitable RPP (TDP-RPP).
Time-dependent ARPs differ from standard ARPs in that
links’ traversal times depend on the time of the day they
are traversed, that is, conditions change over time (as
discussed in Section 2.1.2). This generalization fits, for
instance, real-world situations where distribution/collection
periods include rush hours. Black et al. [38] introduce the
Time-Dependent Profitable ARP (TDP-ARP) for directed
multigraphs (with parallel arcs) and propose a mathemati-
cal formulation and two metaheuristics to generate feasible
solutions. The first metaheuristic is based on a Variable
Neighborhood Search (VNS) that resorts to ten different,
although similar, neighborhoods. The second adapts a method
for the time-dependent vehicle routing problem. This work
was motivated by a freight transport company with the need to
select orders for full truckloads to be carried between pairs of
pickup and destination points. It is assumed that customers’
orders are known before the vehicle starts duty. Fulfillment
of an order results in a known benefit for the company. The
aim is to identify which orders to accept, then identify the
tour that fulfills selected orders while maximizing the dif-
ference between the profit resulting from those orders and
the total travel costs. Parallel arcs are used to allow multiple
orders between the same origin/destination pairs. Compu-
tational results are provided for 41 reality-based instances
generated from two distinct road networks: (i) a network in
the northwest of England (with 25 nodes and 625 arcs, of
which those with an associated prize vary from 50 to 600);
and (ii) a network in the south-east of England in and around
London (with 50 nodes and 2,500 arcs, of which those with
an associated prize vary from 75 to 350). These are available
online (see W_CARPs in Table 9). Results are considered
good for both heuristics, since good quality solutions are gen-
erated even for the larger instances, with the VNS generally
showing better performance.

The same problem was addressed by Yu and Lin [208],
who proposed an iterated greedy heuristic that is validated
over the benchmark instances of [38]. This heuristic begins
with an initial solution, which is iteratively modified in two
phases, the destruction and the subsequent construction. In
the destruction phase, a given number of links are removed
from the solution, and a partial solution is obtained. A greedy
heuristic is then applied in the construction phase to repair
the feasibility of the solution. This heuristic provided the best
solutions for most of the benchmark instances.
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2.4.7. Profitable Location Arc Routing Problem (PL-
ARP). The integration of facility location issues in a P-ARP
was first explored by Arbib et al. [9] for the directed case.
Each selected profitable arc leads to the selection of both
facilities, which are located at the end points of the arc. The
objective is to choose a tour that maximizes the difference
between the profits collected along the required selected arcs
and the total traveling and installation cost. Installation cost
is a fixed cost incurred for each installed facility. The authors
describe real-world applications of this problem as “mid/long
range passenger/freight transportation, for example, long-
distance coach services, airlines, and interstate trucking. The
problem is to choose the connections on which to open a
service.” The study proves that the problem is NP-hard, and
it presents an integer LP model as well as a branch-and-cut
procedure. This begins with the relaxed model with no con-
nectivity constraints, these being iteratively added if needed.
Benchmark instances from the literature were adapted (gen-
erating new instances with 7–102 nodes and 10–200 arcs),
and the algorithm performed well, optimally solving 487
instances out of 516.

3. MULTIPLE VEHICLE ARC ROUTING
PROBLEMS (K-ARPS)

More challenging problems arise when a fleet of K vehi-
cles is available to service the links of a network. Usually,
a homogeneous fleet of capacitated vehicles is at the depot
node, where all tours must start and end, to meet the demands
on the required links at a minimum total cost. Such problems
are known as multiple or K-vehicles ARPs (K-ARPs).

As in the case of single vehicle problems, introducing
several particularities on K-ARPs to accommodate specific
features leads to the definition of different problems within
the larger category of K-ARPs. From 2010 onwards, new
problems have indeed been defined, and researchers are also
devoting further effort to the study of known problems. One
key variant worth mentioning at the outset is the Capacitated
ARP (CARP), which has received increasing attention in
recent years, as reflected in the four chapters devoted to CARP
in the recent arc routing book edited by [64]. Some additional
variants are summarized in [151]. Within the larger cate-
gory of K-ARPs, the many specific features and combinations
make the clustering of problems a difficult task.

To highlight the differences among K-ARP variants,
Tables 4, 5, 6 and 8 list problems, including some referred to
in Section 4, and their characteristics, as well as the related
studies.

The evaluation of K-ARP methods is usually based on the
following benchmark instances:

(i) Six CARP benchmark instance sets referred to in
(I_CARP):

1. kshs - 6 instances with 6–10 nodes, 15 edges, all
required, and 3 or 4 vehicles;

2. gdb - 23 instances with 7–27 nodes, 11–55 edges,
all required, and 4–10 vehicles;

3. val - 34 instances with 24–50 nodes, 34–97
edges, all required, and 2–10 vehicles;

4. egl - 24 instances with 77–140 nodes, 98–190
edges (51–190 required), and 5–35 vehicles;

5. eglL - 23 instances with 255 nodes, 375 edges
(347 or 375 required), and 20–42 vehicles;

6. bmcv - 100 instances with 26–97 nodes, 35–142
edges (28–121 required), and 212 vehicles.

(ii) Two MCARP benchmark instance sets referred to in
(B_MCARP):

1. mval - 34 instances with 24–50 nodes, 43–136
links, including up to 44 required arcs and 106
required edges, and 4–12 vehicles;

2. lpr - 15 instances with 28–401 nodes, 52–1,056
links, including up to 764 required arcs and 387
required edges, and 2–29 vehicles.

This section is organized as follows: the first subsection is
devoted to the CARP, including exact, lower bound methods
and heuristics; the two ensuing subsections refer to the mixed
CARP and a group of problems closely related to CARP; dif-
ferent multiple ARPs are then detailed in the following four
subsections, focusing on problems with several facilities, soft
TW and split deliveries; finally, the stochastic and dynamic
cases are considered. Tactical and strategic extensions pre-
cede the last two subsections, which deal with multiple GRPs
and multiple ARPs with profits, respectively.

3.1. Undirected CARP

The Undirected Capacitated ARP (UCARP), usually
referred to simply as CARP, is defined on an undirected graph.
Each edge has an associated deadheading cost, and each task
has also a known demand and service cost. A fleet of homoge-
nous vehicles is available at the depot and is enough to satisfy
all demand. Vehicles should begin and end their routes at the
depot and service link demands within their capacity (W ). The
aim is to find a set of minimum cost routes, not exceeding the
number of available vehicles.

It is well known that CARP is an NP-hard problem. So is
its 3/2-approximation, that is, the problem of finding a fea-
sible solution with a value of 3/2 the optimum value at most.
Fortunately, a polynomial algorithm with a (7/2 − 3/W)-
approximation is known even if the triangle inequality is not
satisfied [195]. A discussion on complexity issues related to
CARP can be found in [194].

3.1.1. Exact and Lower Bound Methods. Exact CARP
methods and lower bound procedures were recently surveyed
by Belenguer et al. [28] and Ahr and Reinelt [2], respec-
tively. Regardless of CARP’s proven complexity, a number
of recently developed exact methods can be found. One pos-
sible approach consists of transforming the problem into
a node routing problem and then applying existing VRP
methodologies to solve it. The results obtained depend on
the transformation used so that instance dimension does not
increase too much. Recently, Foulds et al. [87] propose a
compact transformation, ensuring the number of nodes in

160 NETWORKS—2017—DOI 10.1002/net



TA
B

L
E

4.
M

ul
tip

le
ve

hi
cl

e
pr

ob
le

m
s’

ch
ar

ac
te

ri
st

ic
s

an
d

re
la

te
d

pu
bl

is
he

d
pa

pe
rs

.

N
et

w
or

k
G

=
(N

,A
∪E

)

Pr
ob

le
m

O
bj

ec
tiv

e
U

/D
/M

/W
A

R
E

R
N

R
O

th
er

ch
ar

ac
te

ri
st

ic
s

Pa
pe

rs

A
R

C
P

(A
rc

R
ou

tin
g

fo
r

C
on

ne
ct

iv
ity

)

M
in

(t
im

e
to

re
co

nn
ec

t)

U
A

R
=

∅
E

R
⊂

E
N

R
=

∅

C
le

ar
bl

oc
ke

d
ar

cs
to

re
co

ve
r

co
nn

ec
tiv

ity
;D

ea
dh

ea
di

ng
al

lo
w

ed
af

te
r

cl
ea

ni
ng

[1
9,

11
7]

M
ax

(b
en

efi
to

f
re

co
nn

ec
tin

g)

[1
17

]

T
im

e
lim

it;
Pr

iz
e

–
ta

ke
s

in
to

ac
co

un
tt

he
nu

m
be

r
of

pe
op

le
it

be
ne

fit
s;

Pr
iz

es
m

ay
pr

io
ri

tiz
e

co
m

po
ne

nt
s

–
hi

gh
er

w
ei

gh
ts

to
ai

rp
or

ts
,s

ch
oo

ls
,h

os
pi

ta
ls

,
et

c.

[4
]

M
in

(c
os

t)
M

ul
tip

le
da

ys
;D

ep
ot

–
1st

da
y

st
ar

tin
g

po
in

t;
N

o
fix

ed
de

po
ts

to
en

d/
st

ar
t

ea
ch

da
y’

s
ro

ut
es

;H
ie

ra
rc

hi
c

se
rv

ic
es

de
fin

ed
by

pr
io

ri
ty

se
ts

[1
99

]

M
in

(M
ax

(t
ou

r
co

st
))

C
oo

rd
in

at
ed

ro
ut

es
[3

,5
]

M
in

(u
nb

lo
ck

in
g

tim
es

);
M

in
(M

ax
(u

nb
lo

ck
in

g
tim

e)
)

D
yn

am
ic

ne
tw

or
ks

;T
im

e-
de

pe
nd

en
tt

ra
ve

lt
im

es
[1

53
]

B
C

A
R

P
M

in
(c

os
t)

M
A

R
⊂

A
E

R
⊂

E
N

R
=

∅
U

pp
er

bo
un

d
on

th
e

nu
m

be
r

of
no

de
s

sh
ar

ed
by

di
ff

er
en

tr
ou

te
s

[5
9]

C
A

R
P

M
in

(c
os

t)

U
A

R
=

∅
E

R
⊂

E
N

R
=

∅
[2

,2
7,

28
,4

0,
41

,4
2,

55
,8

7,
12

8,
12

9,
13

8,
13

9,
14

0,
14

2,
14

3,
15

7,
16

0,
16

1,
17

4,
17

8,
19

1,
19

4,
19

5,
20

0]

W
ith

sp
lit

de
liv

er
ie

s
–

an
ed

ge
de

m
an

d
ca

n
be

se
rv

ic
ed

by
se

ve
ra

lv
eh

ic
le

s
[2

9]

M
ul

ti-
co

m
pa

rt
m

en
tv

eh
ic

le
s

(M
C

V
)

–
ta

sk
s

ha
ve

a
de

m
an

d
fo

r
di

ff
er

en
t

pr
od

uc
ts

an
d

ar
e

se
rv

ic
ed

by
M

C
V

[1
50

]

M
ul

ti-
co

m
pa

rt
m

en
tv

eh
ic

le
s;

M
ul

ti-
da

ys
;S

em
i-

Pe
ri

od
ic

;W
ith

/w
ith

ou
ts

pl
it

de
liv

er
ie

s;
C

oo
rd

in
at

ed
ve

hi
cl

es
[1

18
]

M
A

R
⊂

A
E

R
⊂

E
N

R
=

∅
–

[9
4,

96
,1

41
,1

93
]

D
A

R
⊂

∅
E

R
=

∅
N

R
=

∅
2

ty
pe

s
of

ve
hi

cl
es

:a
sm

al
lo

ne
w

ith
a

fin
ite

ca
pa

ci
ty

to
se

rv
ic

e
ta

sk
s

(S
V

)
an

d
an

ot
he

r
on

e
to

re
fil

li
t(

R
V

);
M

ul
tip

le
lo

ad
s

ar
e

al
lo

w
ed

[6
]

M
A

R
⊂

A
E

R
⊂

E
N

R
=

∅
[1

34
]

M
in

(t
ra

ve
ld

is
ta

nc
e)

D
A

R
⊂

A
E

R
=

∅
N

R
=

∅
Sn

ow
pl

ow
in

g
op

er
at

io
ns

[1
26

]

M
in

(r
oa

d
m

ai
nt

en
an

ce
co

st
s;

po
llu

tio
n)

D
A

R
⊂

A
E

R
=

∅
N

R
=

∅
R

ou
tin

g
of

de
ic

in
g

ve
hi

cl
es

;S
ta

rt
in

g
po

in
ts

;V
eh

ic
le

ty
pe

s;
IF

–
nu

m
be

r,
lo

ca
tio

n,
ty

pe
;L

oa
d

ba
la

nc
in

g;
C

ha
ra

ct
er

is
tic

s
of

ro
ad

ne
tw

or
ks

–
bo

un
da

ri
es

[9
0,

20
6]

C
A

R
PD

D
M

in
(c

os
t)

U
A

R
=

∅
E

R
⊂

E
N

R
=

∅
D

ea
dh

ea
di

ng
de

m
an

ds
,l

ik
e

de
ad

he
ad

in
g

an
ed

ge
,a

ls
o

us
es

ve
hi

cl
es

’
ca

pa
ci

ty
,

al
th

ou
gh

at
a

sm
al

le
r

ra
te

th
an

se
rv

in
g

it
[2

7,
11

9,
18

1]

(C
on

tin
ue

d)

NETWORKS—2017—DOI 10.1002/net 161



TA
B

L
E

4.
(C

on
tin

ue
d)

N
et

w
or

k
G

=
(N

,A
∪E

)

Pr
ob

le
m

O
bj

ec
tiv

e
U

/D
/M

/W
A

R
E

R
N

R
O

th
er

ch
ar

ac
te

ri
st

ic
s

Pa
pe

rs

C
A

R
P-

M
D

M
in

(c
os

t)
U

A
R

=
∅

E
R

⊂
E

N
R

=
∅

[1
14

,1
21

]

H
et

er
og

en
eo

us
ve

hi
cl

es
’

fle
et

[1
30

]

C
A

R
P-

IF
M

in
(c

os
t)

U
A

R
=

∅
E

R
⊂

E
N

R
=

∅
In

te
rm

ed
ia

te
Fa

ci
lit

ie
s

(I
F)

–
w

he
re

ve
hi

cl
es

m
ay

be
em

pt
ie

d
to

re
sp

ec
t

ca
pa

ci
ty

;T
he

re
is

a
tim

e
lim

it
pe

r
to

ur
[9

2]

M
A

R
⊂

A
E

R
⊂

E
N

R
=

∅
[2

02
–2

05
]

IF
w

ith
lim

ite
d

ca
pa

ci
ty

;H
et

er
og

en
eo

us
fle

et
[1

70
]

U
A

R
=

∅
E

R
⊂

E
N

R
=

∅
D

eb
ri

s
co

lle
ct

io
n

an
d

tr
an

sp
or

ta
tio

n;
N

ew
co

ns
tr

ai
nt

s
–

ac
ce

ss
ib

ili
ty

be
tw

ee
n

di
ff

er
en

ta
re

as
;2

ta
sk

ty
pe

s:
bl

oc
ke

d
ro

ad
s

w
ith

de
br

is
to

re
m

ov
e

&
tr

an
sp

or
t;

cl
ea

ne
d

ro
ad

s
w

ith
de

br
is

to
tr

an
sp

or
t;

B
lo

ck
ed

ar
cs

ca
n

be
tr

av
er

se
d

on
ly

af
te

r
be

in
g

se
rv

ic
ed

[1
58

,1
59

]

C
A

R
PS

D
M

in
(c

os
t+

ex
pe

ct
ed

co
st

)
U

A
R

=
∅

E
R

⊂
E

N
R

=
∅

St
oc

ha
st

ic
de

m
an

ds
–

po
ss

ib
ili

ty
of

ro
ut

e
fa

ilu
re

s
w

he
ne

ve
r

th
e

re
al

iz
ed

de
m

an
d

ex
ce

ed
s

th
e

ve
hi

cl
e

ca
pa

ci
ty

[1
25

]

M
in

(d
ea

dh
ea

di
ng

co
st

;K
)

D
A

R
=

∅
E

R
⊂

E
N

R
=

∅
R

oa
d

m
ai

nt
en

an
ce

in
cl

ud
in

g
vi

su
al

ch
ec

ki
ng

on
ro

ad
s;

St
oc

ha
st

ic
se

rv
ic

es
–

no
rm

al
di

st
ri

bu
tio

n;
T

im
e

lim
it

–
fr

om
th

e
pr

ob
ab

ili
ty

of
ea

ch
to

ur
du

ra
tio

n;
R

is
ks

re
ga

rd
in

g
ex

tr
em

e
ou

tc
om

es

[5
4]

M
in

(w
or

st
-c

as
e

va
lu

e)
[5

3]

C
A

R
P-

T
W

M
in

(#
to

ur
s+

T
W

vi
ol

at
io

ns
)

M
A

R
⊂

A
E

R
⊂

E
N

R
=

∅
So

ft
T

im
e

W
in

do
w

s
(T

W
)

–
a

pe
na

lty
is

du
e

w
he

n
se

rv
ic

e
of

an
ar

c
is

ou
ts

id
e

its
T

W
[1

,1
97

]

M
in

(c
os

t)
U

A
R

=
∅

E
R

⊂
E

N
R

=
∅

R
oa

d
re

su
rf

ac
in

g;
Pr

ec
ed

en
ce

be
tw

ee
n

ro
ad

tr
ea

tm
en

ts
[1

11
]

D
yC

A
R

P
M

in
(c

os
t)

U
A

R
=

∅
E

R
⊂

E
N

R
=

∅
D

yn
am

ic
ne

tw
or

k;
Se

ve
ra

ld
ep

ot
s;

H
et

er
og

en
eo

us
fle

et
–

di
ff

er
en

tc
ap

ac
iti

es
;

R
e-

pl
an

ni
ng

du
e

to
ob

st
ac

le
s

in
a

pl
an

ne
d

to
ur

,v
eh

ic
le

br
ea

kd
ow

n
or

ad
de

d/
ca

nc
el

ed
de

m
an

ds

[1
27

,2
07

]

D
/M

A
R

⊂
A

E
R

=
∅/

E
R

⊂
E

N
R

=
∅

[1
27

]

K
-A

R
P

M
in

(d
is

ru
pt

io
n

co
st

s)
U

A
R

=
∅

E
R

⊂
E

N
R

=
∅

R
es

ch
ed

ul
in

g
K

-A
R

P
–

du
e

to
a

ve
hi

cl
e

br
ea

kd
ow

n;
N

ee
d

to
re

sc
he

du
le

ta
sk

s
no

ts
er

vi
ce

d
du

e
to

th
e

to
ur

di
sr

up
tio

n;
Se

ve
ra

ls
ta

rt
in

g
po

in
ts

–
en

di
ng

ta
sk

no
de

s
in

in
iti

al
pl

an

[1
49

]

M
in

(c
os

t)
U

A
R

=
∅

E
R

⊂
E

N
R

=
∅

Sn
ow

pl
ow

in
g

op
er

at
io

ns
;P

ri
m

ar
y

ro
ad

s
se

rv
ed

1st
to

re
ac

h
se

co
nd

ar
y

on
es

[1
10

]

M
in

(t
ra

ve
rs

al
an

d
pe

na
lty

co
st

)
D

ei
ci

ng
–

pr
io

ri
ty

no
de

s;
Pe

na
lti

es
–

de
la

ys
in

re
ac

hi
ng

pr
io

ri
ty

no
de

s
[1

20
]

M
in

(c
os

t)
D

A
R

⊂
A

E
R

=
∅

N
R

=
∅

Sw
ee

pi
ng

ro
ut

es
;T

as
k

se
rv

ic
es

:a
s

m
an

y
tim

es
as

th
e

nu
m

be
r

of
st

re
et

si
de

s;
T

im
e-

de
pe

nd
en

t–
tr

af
fic

flo
w

;T
ur

n
co

ns
tr

ai
nt

s
[3

9]

M
in

(K
)

W
in

te
r

ro
ad

m
ai

nt
en

an
ce

:d
ep

ot
lo

ca
tio

n;
se

ct
or

de
si

gn
;v

eh
ic

le
sc

he
du

lin
g

an
d

fle
et

co
nfi

gu
ra

tio
n;

tim
e

lim
it

co
ns

tr
ai

nt
[1

16
]

(C
on

tin
ue

d)

162 NETWORKS—2017—DOI 10.1002/net



TA
B

L
E

4.
(C

on
tin

ue
d)

N
et

w
or

k
G

=
(N

,A
∪E

)

Pr
ob

le
m

O
bj

ec
tiv

e
U

/D
/M

/W
A

R
E

R
N

R
O

th
er

ch
ar

ac
te

ri
st

ic
s

Pa
pe

rs

K
-A

R
P

M
in

(c
os

t)
W

A
R

=
∅

E
R

⊂
E

N
R

=
∅

Pl
ow

in
g

w
ith

pr
ec

ed
en

ce
co

ns
tr

ai
nt

s;
1st

pl
ow

cr
uc

ia
ls

tr
ee

ts
;S

te
ep

st
re

et
s

sh
ou

ld
no

tb
e

pl
ow

ed
up

hi
ll

[8
1,

82
]

M
in

(t
ot

al
de

ad
he

ad
in

g)
M

A
R

⊂
A

E
R

⊂
E

N
R

=
∅

R
ai

lr
oa

d
tr

ac
k

in
sp

ec
tio

n
to

pr
ev

en
tf

ai
lu

re
s;

T
im

e
lim

it;
he

te
ro

ge
ne

ou
s

fle
et

;
tr

ac
k

ou
ta

ge
s;

C
ap

ac
ity

ca
n

be
re

co
ve

re
d

at
IF

,≤
on

ce
pe

r
sh

if
t

[1
22

,1
23

]

K
-C

E
R

PP
M

in
(c

os
t)

D
A

R
⊂

A
E

R
=

∅
N

R
=

∅
or

K
-G

R
PP

–
cl

ie
nt

s
ar

e
se

rv
ed

fr
om

a
cl

os
e

en
ou

gh
di

st
an

ce
[2

2]

M
M

K
-C

PP
M

in
(l

on
ge

st
ro

ut
e)

U
A

R
=

∅
E

R
=

E
N

R
=

∅
Se

ek
s

th
e

m
in

im
iz

at
io

n
of

th
e

lo
ng

es
tr

ou
te

[3
4]

M
M

K
-R

PP
M

in
(l

on
ge

st
ro

ut
e)

U
A

R
=

∅
E

R
⊂

E
N

R
=

∅
Se

ek
s

th
e

m
in

im
iz

at
io

n
of

th
e

lo
ng

es
tr

ou
te

[3
4]

U
/W

[3
1,

33
,3

5]

W
ith

ae
st

he
tic

is
su

es
,i

.e
.,

so
lu

tio
n

sh
ap

e
ch

ar
ac

te
ri

st
ic

s
[6

3,
13

5]

Pa
tr

ol
ro

ut
es

de
si

gn
;U

np
re

di
ct

ab
le

ro
ut

es
;B

al
an

ce
d

w
or

kl
oa

d
[2

01
]

M
O

-C
A

R
P

M
in

(c
os

t;
lo

ng
es

t
ro

ut
e)

U
A

R
=

∅
E

R
⊂

E
N

R
=

∅
3rd

ob
je

ct
iv

e
–

m
in

im
iz

e
th

e
nu

m
be

r
of

ve
hi

cl
es

[9
7]

[1
77

,1
79

,1
80

]

M
A

R
⊂

A
E

R
⊂

E
N

R
=

∅
[1

45
]

O
-C

A
R

P
M

in
(c

os
t)

U
A

R
=

∅
E

R
⊂

E
N

R
=

∅
N

o
fix

ed
de

po
t;

To
ur

s
ne

ed
no

tf
or

m
cy

cl
es

[1
92

]

Fi
xe

d
de

po
tt

o
st

ar
tw

ith
no

fix
ed

en
d;

M
ax

im
um

di
st

an
ce

sp
an

[8
8]

Sy
A

R
P

M
in

(l
on

ge
st

ro
ut

e)
D

A
R

⊂
A

E
R

=
∅

N
R

=
∅

Sn
ow

pl
ow

in
g

–
sy

nc
hr

on
iz

ed
ve

hi
cl

e
ro

ut
es

[1
72

]

Sy
C

G
R

P
M

in
(t

im
e)

D
A

R
⊂

A
E

R
=

∅
N

R
⊂

N
2

ty
pe

s
of

ve
hi

cl
es

w
ith

sy
nc

hr
on

iz
ed

ro
ut

es
[1

73
]

T
D

C
A

R
P

M
in

(s
er

vi
ce

an
d

tr
av

el
to

ta
lc

os
t)

D
A

R
⊂

A
E

R
=

∅
N

R
=

∅
Se

rv
ic

e
co

st
s

co
m

pu
te

d
w

ith
a

pi
ec

ew
is

e
lin

ea
r

fu
nc

tio
n,

w
hi

ch
in

cl
ud

es
in

te
rv

al
s

w
he

re
se

rv
ic

e
co

st
s

ar
e

m
in

im
um

[1
88

]

D
yn

am
ic

ne
tw

or
ks

–
du

e
to

w
ea

th
er

re
po

rt
up

da
te

s;
Se

rv
ic

e
co

st
s

co
m

pu
te

d
w

ith
a

pi
ec

ew
is

e
lin

ea
r

fu
nc

tio
n

[1
89

]

A
fle

et
of

K
ho

m
og

en
eo

us
ve

hi
cl

es
w

ith
fix

ed
ca

pa
ci

ty
is

as
su

m
ed

.
U

/D
/M

/W
–

U
nd

ir
ec

te
d/

D
ir

ec
te

d/
M

ix
ed

/W
in

dy
.

NETWORKS—2017—DOI 10.1002/net 163



the resulting graph exceeds the number of required edges
by only one. Resorting to an algorithm for the capacitated
vehicle routing problem, the authors reported computational
experiments on CARP benchmark instances, and succeeded
in solving some open instances.

A branch-and-cut-and-price is attributed to Martinelli
et al. [138]. This algorithm is based on a formulation that
does not identify elementary tours, as only one variable is
associated with each edge. Hence, integer solutions might
not be feasible for CARP. In fact, the method produces
valid lower bounds but not necessarily optimum values. This
motivates Martinelli et al. [139] to formulate a problem to
separate capacity constraints. This model makes it possible
to identify violated capacity cuts for any number of vehi-
cles at once. However, as exact separation is suitable only
for medium-sized instances, the authors also propose a dual-
ascent heuristic to deal with the larger instances. Additionally,
they use an initial set of cuts on the one index formulation to
reduce the number of times the exact procedure is applied.
This strategy has obtained impressive lower bounds on some
benchmark instances.

Bartolini et al. [26] use a transformation into node rout-
ing, where each required edge is represented by a cluster
of two nodes, and present an extended formulation for set
partitioning. They use four lower bounding procedures solv-
ing increasingly stronger relaxations, with the last one often
providing a lower bound quite close to the optimum. Relax-
ations are obtained by allowing non-elementary tours. The
corresponding linear relaxations are strengthened with valid
inequalities. Usually the integer problem is not solved. How-
ever, should an upper bound be known, the lower bounding
procedures may be complemented and an attempt is made
to explicitly solve the last extended formulation. To gener-
ate tours with small reduced costs, a two-phase algorithm is
developed. Firstly, and by means of a dynamic programming
procedure, forward and backward paths are built, that is, paths
that begin or end at the depot; secondly, these paths are com-
bined in feasible tours within a controlled reduced cost. The
effectiveness of this procedure is attested in a computational
study on CARP benchmark instances.

In several works, Bode and Irnich explore the sparsity of
the original graph to design exact algorithms for the CARP.
First, Bode and Irnich [40] develop a branch-and-price algo-
rithm that is preceded by a cutting phase. The computational
results evidence the effectiveness of the direct approach
versus the node routing approach. Later, Bode and Irnich
[41] and Bode and Irnich [42] concentrate on the pricing
problem and work on its relaxations, while providing an effi-
cient labeling procedure for their resolution. Computational
experiments display improved achievements.

Very recently, Porumbel et al. [157] propose a method
to solve the CARP by combining Column Generation (CG)
with Iterated Local Search (ILS). Both run in parallel. On one
hand, the best routes found by CG are included in the cur-
rent ILS solution during the perturbation phase, so that dual
information is conveyed to the ILS. On the other hand, the
CG improvement operator works on current ILS solutions

and thus helps to increase diversification of the solutions
visited by ILS and avoids getting stuck in local optima. Exten-
sive computational experiments on benchmark instances are
reported and prove the competitiveness of the method.

The approach of Foulds et al. [87] was tested on set 4 (egl)
and provided optimal solutions for four instances, the largest
with 140 nodes, 190 edges (75 required), and 14 vehicles.
Martinelli et al. [139] performed computational tests on all
six benchmark sets, obtaining the first lower bounds for set 5
(eglL) and improving upper bounds. The authors report good
figures for the small/medium instances as well. Bartolini et
al. [26] display results for sets 1–4 (kshs, gdb, val, egl) and set
6 (bmcv), having solved 27 instances for the first time (6 from
egl and 21 from bmcv). Bode and Irnich [41] report 19 best
lower bounds over the 33 unsolved instances of bmcv, proving
the optimality of 15 instances for the first time. They obtained
three new best lower bounds for egl instances. Interestingly,
as noted by Bode and Irnich [41], the two works’ combined
results by Bartolini et al. [26] and Bode and Irnich [41] leave
only 12 egl and 10 bmcv instances unsolved. Porumbel et al.
[157] test their method over the six sets of instances, finding
new upper bounds for half the bmcv instances.

Considering the latest developments in exact methods, we
may conclude that the performance of a solution has a close
relationship with the type of instance that it addresses. For
sparse graphs, the direct arc routing approach seems to be the
most suitable.

3.1.2. Heuristic Algorithms. The challenge posed by
CARP and its relevant applications continuously attracts
scholarly effort to find feasible solutions, and a number of
heuristics, mostly metaheuristics in fact, have been devel-
oped for CARP in recent years. A state of the art analysis
of this topic may be found in [160], who also gives an inter-
esting comparative summary of the performance of several
heuristics on benchmark instance sets (CPS_ARP in Table 9).
A revision to references of order-first split-second methods,
including arc and node routing cases, is presented by Prins et
al. [161], with the purpose of convincing readers that “route-
first cluster second heuristics compete with other heuristics.”

Santos et al. [174] present an ant colony-based metaheuris-
tic while introducing some modifications. Computational
tests were performed on sets 1–4 (kshs, gdb, val, egl) and set 6
(bmcv) of CARP benchmark instances. The authors conclude:
(i) best performance is achieved when the initial population
contains only very good solutions; (ii) only the best solutions
are needed to compute current pheromone amounts; (iii) best
overall results are generated from only the ten best solutions
generated so far; (iv) the newly proposed ant decision is better
than the usual pseudo-random-proportional; and (v) modifi-
cations introduced in the local search improve the quality of
solutions and/or reduce CPU time.

In [140], a biased Random Key Genetic Algorithm
(RKGA) is combined with a local search. In an RKGA, ran-
domly generated numbers (the keys) are used to represent
chromosomes. A deterministic algorithm, called a decoder,
is used to transform a vector of these random keys into a
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feasible solution to the original problem. The RKGA is intro-
duced to overcome the problem of non-feasible offspring (a
drawback in genetic algorithms). Population is divided into
groups of elite and non-elite individuals according to a fitness
measure, the elite being a small percentage of the popula-
tion to be transferred to the next population. This variant
is called biased random key because each new individual is
obtained by combining a randomly selected element from
the elite partition of the current population with another from
the non-elite partition. Mate repetition is also allowed. Mar-
tinez et al. [140] report results of computational experiments
performed on sets 1–3 (kshs, gdb, val) of CARP benchmark
instances. Optimal or near optimal solutions are obtained with
small computational times. According to the authors, the suc-
cessful results are due to: (i) the manner in which the initial
population is generated, allowing intensification of the search
procedure in different regions; (ii) the parameterized uniform
crossover operator employed to mate elite with non-elite indi-
viduals; and (iii) the effectiveness of the improvement phase
after crossover and mutation. The neighbors list and classical
local search methods also permit the intensification of the
search process in attractive regions.

Martinelli et al. [139] transform the original CARP
instances and implement an iterated local search procedure
for a node routing problem. They describe extensive com-
putational experiments on the six sets of CARP benchmark
instances, improving the known upper bounds.

A greedy randomized adaptive search procedure with
path-relinking is proposed in [191]. Some features of the
method are highlighted, namely: “(i) a reactive parameter
tuning, where the parameter value is stochastically selected
biased in favor of those values which historically produced
the best solutions in average; (ii) a statistical filter, which
discard initial solutions if they are unlikely to improve the
incumbent best solution; (iii) infeasible local search, where
high-quality solutions, though infeasible, are used to explore
the feasible/infeasible boundaries of the solution space; (iv)
evolutionary path-relinking, a recent trend where the pool of
elite solutions is progressively improved by successive relink-
ing of pairs of elite solutions.” Computational results on sets
2–4 (gdb, val, egl) of CARP benchmark instances are reported
as providing better bounds than previous metaheuristics,
although they are more time-consuming.

A memetic algorithm with iterated local search is proposed
by Liu et al. [129]. The method incorporates a new crossover
operator (the longest common substring crossover), an iter-
ated local search and a perturbation mechanism. Infeasible
solutions are allowed during the local search process and may
be present during the perturbation mechanism. The method is
also evaluated on sets 2–4 (gdb, val, egl) of CARP benchmark
instances, evidencing a competitive performance.

To tackle the largest CARP benchmark instances, eglL,
Mei et al. [142] present a method to find promising decom-
positions to derive solutions by means of a divide and conquer
method. Later, Mei et al. [143] improve on the decomposition
procedure by incorporating information about the quality of
the best solution found in the search. Experimental studies,

conducted on sets 2–6 (gdb, val, egl, eglL, bmcv) of CARP
benchmark instances, confirm intuition: it is a good approach,
particularly for large instances.

Liu et al. [128] describe a memetic algorithm for CARP,
tested on three instances: an undirected graph with 100 nodes
and 167 edges, an oriented graph with 200 nodes and 647
edges, and a mixed graph with 600 nodes and 999 links.
Instances were obtained from the instance generator pro-
posed, which is a major contribution of the work and is
available online (see LIU in Table 9). The purpose of this
instance generator is to add instances with realistic features
for specific applications to CARP benchmark sets.

A rank-based memetic algorithm is presented in [200].
The essence of this algorithm is the newly introduced rank-
based neighborhood search operator. Experiments reported
on sets 2–4 (gdb, val, egl) and set 6 (bmcv) of the CARP
benchmark instances show impressive performance. The
authors claim the success of their approach resides in
four major components: local search procedure yielding to
promising local optima; a rank-based neighborhood search
operator; evaluation of edge position in a solution; and good
pruning strategies.

Recently, Shang et al. [178] propose another metaheuris-
tic, more precisely, an immune clonal selection algorithm.
This algorithm is inspired by the clonal selection theory,
which is proposed to account for the behavior and capabilities
of antibodies in the acquired immune system. An improved
constructive heuristic is used to initialize the antibody pop-
ulation, which helps accelerate the algorithm’s convergence.
The authors then stress that the immune clonal selection algo-
rithm decides in favor of high-quality antibodies by adopting
a variety of different strategies for different clones of the
same antibody. It not only promotes cooperation and informa-
tion exchange among antibodies, but also increases diversity
and speeds up convergence. Shang et al. [178] also propose
two different antibody repair operations for various types of
infeasible solutions. These infeasible solutions are allowed
in order to permit a faster movement towards global optima.
Experimental studies on sets 2–4 (gdb, val, egl) of CARP
benchmark instances display improved performance.

A hybrid metaheuristic approach is presented in [55].
The method incorporates an effective local refinement pro-
cedure into a memetic algorithm, coupling a randomized
tabu thresholding procedure with an infeasible descent proce-
dure. The approach includes a specially designed route-based
crossover operator for solution recombination and a distance-
and-quality-based replacement criterion for pool updating.
Extensive experimental studies are reported on sets 2–6 (gdb,
val, egl, eglL, bmcv) of CARP benchmark instances. In 15 out
of the 191 tested, an improved best result is found; moreover,
9 of the best results are found in the same set of 10 large
instances.

3.2. Mixed CARP

The mixed CARP (MCARP) is addressed in [96],
where compact models are proposed. Two mixed integer
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programming flow-based formulations, a valid one and a
relaxation, are presented. The valid formulation enables solv-
ing small-sized instances to optimality, while the relaxation
provides good lower bounds for large instances. These con-
clusions were drawn from computational experiments using
the models on MCARP benchmark instances, which include
two sets: one with 34 instances with 24–50 nodes and 43–138
links, all required; and another set with 15 instances, contain-
ing larger instances, with 28–401 nodes and 50–1,056 links,
not all required.

Very recently, van Bevern et al. [193] prove the mixed
and windy CARP (MWCARP) to be 35-approximable in
O

(
2CC2 + n3 log n

)
, C being the number of weakly con-

nected components of the subgraph induced by the tasks in
the original graph. The polynomial time algorithm begins
with computing a giant tour, then splitting it into subtours of
demand up to W . The algorithms accomplishing both phases
are basically those used in the complexity study proofs. To
assess the quality of the produced upper bounds, the authors
use the MCARP benchmark instances and compare results
with those obtained by other polynomial algorithms. Their
manner of computing the giant tour seems to be advanta-
geous. Large benchmark CARP instances (I_CARP in Table
9) were also tried, and for all ten instances better upper
bounds were found. Computational results over a new set
of instances (RvB_MCARP in Table 9) with 255–401 nodes
and 362–1,025 links, generated to have data sets with C > 1
(tried for C ranging from 2 to 5), are also reported. The com-
putational times are rather short, and results can be used for
an initial solution for local search algorithms.

Multiple ARPs on mixed and windy graphs have been also
presented by other authors and will be mentioned in the next
sections, since they deal with additional constraints or have
other specific characteristics.

3.3. Other CARP Variants

The CARP with Deadheading Demand (CARPDD) was
studied by Sipahioglu et al. [181], Kirlik and Sipahioglu
[119] and Bartolini et al. [27]. The problem is a slight vari-
ation of the CARP where deadheading an edge also uses
vehicles’ capacity, although capacity declines at a lower rate
than service is accomplished. An example of an application
is multi-robot sensor-based coverage path planning, where
vehicles still consume energy while deadheading links. Kir-
lik and Sipahioglu [119] propose an integer linear model,
which enables them to solve small-sized instances to opti-
mality, as well as a constructive heuristic and two improving
procedures. The methods are tested on instances obtained
by modifying sets 2–4 (gdb, val, egl) of CARP benchmark
instances. Bartolini et al. [27] introduce a new family of
valid inequalities to strengthen the lower bounds, after show-
ing that the strongest CARP lower bounds can be weak for
the CARPDD. These authors develop an exact branch-and-
cut-and-price algorithm, reporting extensive computational
results on a large set of benchmark instances (very sparse
new instances generated from benchmark instances—see

BCL_CARPDD in Table 9—and those of [119]). The same
exact algorithm is also tested on classical CARP benchmark
instances (kshs, gdb, val, egl, bmcv) and shown to improve
on the best known solutions achieved in the authors’ previous
work [26] and the work of Bode and Irnich [40].

Considering only one tour, the Distance Constrained Gen-
eralized Directed RPP was previously dealt with in the single
vehicle section and are named GRPP or CERPP. To sim-
plify and lend coherence, the multiple case may be named
K-GRPP (multiple generalized RPP) or K-CERPP (multi-
ple close-enough RPP). The problem arises when a vehicle
with a receiver is used to register gas, water, or electricity
consumption. The vehicle travels through a series of neigh-
borhoods and needs to get close enough to read each meter.
In the multiple vehicle case, the problem deals with finding
a set of routes, one for each vehicle and not exceeding a time
limit, and traversing at least one arc from each of the sub-
sets of a defined arc subset collection, so that total length is
minimized. This collection is such that all clients are reach-
able from a close enough distance. Ávila et al. [22] presents
several formulations with some families of valid inequali-
ties and developed branch-and-cut algorithms. Formulations
and algorithms are compared over a large set of instances to
show that two of the proposed algorithms perform well and
are able to solve instances with up to five vehicles, 196 nodes,
450 arcs, and 150 customers.

Constantino et al. [59] observe that the shape of the solu-
tions obtained when solving ARPs very often fails in practical
terms for being not sufficiently attractive in the eyes of prac-
titioners, and they define a problem to help lessen that failure
rate. These authors define the Bounded overlapping mixed
CARP (BCARP) as a mixed CARP with an additional con-
straint imposing an upper bound on the number of nodes
shared by different routes. Integer models are defined to find
the limit to be imposed, and one of them selected as the best
one. A two-step approach is also proposed. This involves first
solving an integer model to find the bound to be imposed
on the overlapping nodes, then using an integer solver to
find an MCARP solution bearing the additional constraint.
As the integer solver makes this approach inappropriate for
medium-sized instances, a heuristic procedure is also pre-
sented. Computational results are provided using MCARP
benchmark instances to evaluate the performance of the meth-
ods in terms of solution cost and shape, and problems with up
to 53 nodes and 160 links are optimally solved. One impor-
tant conclusion is that the additional requirement to prevent
overlapping routes from impacting the total cost has only a
small effect. One other contribution is the proposal of three
different measures to quantify shape quality. These are also
evaluated and compared in tests.

3.3.1. Open CARP. The Open CARP (O-CARP) releases
the imposition that tours must begin and end at the depot, and
so in this CARP variant tours may not form cycles. In [192],
an integer LP formulation is given and the properties of the
problem are discussed. A reactive path-scanning heuristic,
guided by cost-demand edge-selection and ellipse rules, is
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proposed to find upper bounds on the optimal value. Exten-
sive computational experiments were performed on instances
derived from CARP benchmarks, resulting in instances with
7–140 nodes and 15–190 edges. In 32% of the instances,
optimality was found and proved. Fung et al. [88] consider
that only the end of each tour is open, that is, may occur out-
side the depot. They use an asymmetric graph and impose,
in addition to vehicle capacity, a maximum distance span.
A memetic algorithm and a lower bound obtained through
a transformation into a node routing problem are presented.
Computational experiments were run on randomly generated
instances (with 200–500 nodes and 20–300 arc tasks), on
adapted CARP instances (20 from gdb and val instances,
with 21–92 required arcs) and on instances of the Open
Capacitated Vehicle Routing Problem (with 50–199 cus-
tomers), each and all attesting to the quality of the proposed
methods.

3.3.2. CARP with Other Objectives Within the frame-
work of ARPs with multiple vehicles, a number of researchers
have focused on different objectives other than minimiz-
ing the total cost. Some studies are also concerned with
combinations of diverse objectives; thus multi-objective
approaches are also part of the landscape. Benavent et al. [34]
present the most important studies of ARPs with min-max
objectives.

An example of a different objective is the minimization
of the length of the longest route, as in the Min-Max K-
vehicles Windy RPP (MMK-WRPP). The problem is defined
on a windy graph and aims to find a set of routes to service
all tasks in the network. The objective is the minimization
of the length of the longest route, as this hopefully leads
to finding a set of balanced routes. Benavent et al. [35]
describe a metaheuristic based on the combination of a multi-
start procedure with an iterated local search. Computational
experiments on a large set of instances reveal the method
to be capable of producing high-quality solutions in reason-
able computing times. A year later, the same authors [33]
present several new facet-inducing inequalities and improve
on a previously developed branch-and-cut. The first polyhe-
dral study, by the same authors, is well surveyed in [34]. The
aforementioned metaheuristic is used to obtain high-quality
feasible solutions. The algorithm has been tested on the same
set of instances as the first version of the branch-and-cut.
Computational results are very good, underlining the contri-
bution of the new inequalities. Later on, Benavent et al. [31]
propose a branch-and-price-and-cut with the goal of devel-
oping a method able to deal with a larger number of vehicles.
Computational experiments were conducted on a set of 144
instances, with 7–50 nodes, 10–184 edges, 4–78 required,
with 2–6 vehicles for all instances. The branch-and-price-
and-cut improved the number of optimums found, from 113
to 124 for 5 vehicles and from 101 to 121 for 6 vehicles. These
tests show that the goal of dealing with a larger number of
vehicles was thus achieved. The branch-and-cut proposed by
Benavent et al. [33] still represents the best approach when
2, 3, or 4 vehicles are used.

In an effort to address the shape problem mentioned
above, Corberán et al. [63] introduce aesthetic considera-
tions into the MMK-WRPP. The goal is to obtain routes that
are acceptable to practitioners. Several formulations for the
problem are proposed, incorporating measures developed by
Constantino et al. [59] to control the solution’s shape qual-
ity. From those models, and based on computational tests
on generated small-sized instances, a bi-objective function
is selected. This outperforms functions that minimize the
length of the maximum route constrained by a threshold for
the shape quality measure, and it even outperforms func-
tions that optimize the shape quality measure by imposing
a tour length limit. Computational experiments on generated
larger-sized instances (having the largest set 100–255 nodes,
300–620 edges, 100–400 required and 2–5 vehicles) were
then conducted using both a branch-and-cut and a heuristic.
The heuristic is an extension of the cluster-first procedure for
the MMK-WRPP proposed by Lum et al. [135] and will be
detailed in the Sectoring Problems Section (3.7.3).

Concerning Multi-Objective CARP (MO-CARP),
Grandinetti et al. [97] present an optimization-based heuris-
tic to find the non-dominated solutions. The method evi-
denced a competitive behavior when tested on CARP bench-
mark instances (kshs, gdb, val, egl), considering that three
objectives are being simultaneously minimized: the total
transportation cost, the longest route cost, and the num-
ber of vehicles. Other heuristics are developed and tested
for the same purpose, namely: Mei et al. [145] derived a
decomposition-based memetic algorithm; Shang et al. [180]
a multi-population cooperative coevolutionary algorithm;
Shang et al. [179] a decomposition-based memetic algo-
rithm; and Shang et al. [177] an immune clonal algorithm
based on directed evolution. The authors report test results
for various sets of CARP benchmark instances, claim good
achievements, and point to possibilities for future research.

3.4. K-ARPs with Several Facilities

In this subsection, we report the recent research conducted
on multiple vehicle ARPs with multiple depots, which usually
consist of intermediate facilities, refill vehicles, and multiple
landfills with a limited capacity.

The case of multi-depot CARP (CARP-MD), as opposed
to the single depot considered in the CARP definition, was
recently studied by Krushinsky and Woensel [121]. They
work on an asymmetric graph and present a two-index
mixed integer LP formulation, as well as valid inequalities
to strengthen the LP relaxation. A branch-and-cut is also
described and tested over three different sets of instances:
randomly generated (with 20–243 nodes, 32–521 arcs, all
required, and 3–8 vehicles); derived from real networks (with
30–298 nodes, 106–629 arcs, 92–473 required, and 3–9 vehi-
cles); and some derived from CARP benchmark instances
(with 24–140 nodes, 68–380 arcs and 3–6 vehicles). New
heuristics for CARP-MD can also be found in [114], where a
hybrid genetic algorithm with perturbation is proposed, and
in a paper by Liu et al. [130], who develop a genetic local
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search algorithm where the fleet is also considered to be het-
erogeneous. The tests were performed on a set of instances
obtained from the CARP benchmark instances.

Ghiani et al. [92] present an ant colony optimization proce-
dure for the ARP with Intermediate Facilities under capacity
and length restrictions (CARP-IF). This variant of the CARP,
defined on an undirected graph, also includes Intermediate
Facilities (IF) where each vehicle must unload each time
its capacity is reached. A tour, beginning, and ending at the
depot, must respect a maximum length. The heuristic’s per-
formance is tested on instances (with 7–27 nodes and 11–92
edges) derived from medium sized CARP sets. Based on
the results, the authors conclude that this approach is capa-
ble of providing substantial improvements over other known
heuristics.

Willemse and Joubert work on the Mixed Capacitated
ARP under time restrictions and with Intermediate Facilities
(MCARP-IF), with application to household waste collec-
tion. A mixed graph is used to represent the road network,
and in addition to the standard technical features found in
CARP, a set of intermediate facilities is available where
vehicles may unload if capacity becomes an issue. A time
limit for each route is also imposed. In [202], the problem is
defined and constructive heuristics, adapted from heuristics
for the CARP or the MCARP, are tested to provide fea-
sible solutions for the new problem. These solutions were
designed to minimize not only the total cost, but also the
fleet size. The authors highlight the observation that incon-
sistency in the heuristics’ performance may be due to the fact
that used instances (some of them adapted from CARP and
MCARP instances) do not accurately mimic the application.
Willemse and Joubert [203, 205] then describe and discuss
new instances generated for the problem (see WJ_CARPIF in
Table 9). Later, Willemse and Joubert [204] develop splitting
procedures, and results on benchmark instances show that the
constructive heuristic linked with the new optimal splitting
algorithm performs better than the near-optimal versions.

Rodrigues and Ferreira [170] work with the MCARP in
order to address scenarios with a heterogeneous fleet, multi-
ple landfills with a limited capacity or a combination of both.
They begin with a sectoring phase (which will be detailed
in Section 3.7.3), and the routing phase is then executed by
extending the mixed integer programming model of [96] to
cope with the three above-mentioned extensions. The pro-
cedure was tested on instances derived from the literature
and on real-world-based instances (see Section 4.1.3). The
authors observe that integrating sectoring and routing is an
effective way to deal with such applications.

The capacitated ARP with refill points and multiple loads
is another extension of CARP. Two different types of vehicles
are used: a small one, with a finite capacity to service demands
on arcs (SV - Servicing Vehicle), and a second vehicle to
refill the SV (RV - Refilling Vehicle). SVs can deliver mul-
tiple loads before having to return to the depot, while an RV
has to return to the depot each time it meets an SV. The total
demand of an SV path between two consecutive refill points
cannot exceed its capacity. The problem lies in determining

the routes for both kinds of vehicles in order to minimize the
total cost. The problem is tackled in [6] in order to solve a
road marking problem (see Section 4.4.4). A mixed integer
programming formulation, a cutting plane algorithm and a
route-first cluster-second heuristic are presented. The meth-
ods were tested on randomly generated instances. The exact
method found the optimal solution for small-sized instances
(with 20–70 nodes and an average number of arcs varying
from 2.5 to 8.5 per node), and the heuristic behaved well
when tested on a real road network in Canada with 140 nodes
and 374 arcs. For the same problem, López-Santana et al.
[134] propose a hybrid heuristic inspired by a scatter search
procedure also involving an iterated local search and simu-
lated annealing. Promising experimental results are reported
on val CARP instances transformed according to a proposed
procedure.

3.5. K-ARPs with Soft Time Windows and Split Deliveries

Sometimes an ideal time period exists for performing a
service, and this may be relevant to its cost. One option for
modeling such situations consists of charging a penalty when-
ever services are performed outside of the ideal time. Another
issue possibly affecting cost is the possibility of split deliv-
eries, that is, a service demand that is split by more than
one vehicle, or the use of vehicles able to carry more than
one commodity. These particularities are addressed in this
subsection.

Capacitated arc routing with soft TW differs from CARP
in that the network is mixed and a penalty is due when an arc is
serviced outside its time window. The objective is to minimize
a weighted sum of the number of days (equal to the number of
tours) and the total time window violations. Vansteenwegen et
al. [197] note that this problem arises in digital map construc-
tion (better detailed in Section 4.5.3). Their approach uses a
transformation into node routing to derive a metaheuristic
that combines a local search to decrease the number of tours
with an iterated local search to minimize time window viola-
tions. Computational experiments were performed on a test
set from the literature and on eight large real-life instances
designed from Flemish bicycle networks with 93–891 nodes,
124–1,289 edges and 1–91 arcs. Afsar [1] uses a Dantzig-
Wolfe decomposition and column generation approach to
solve the problem to optimality. The method was tested on
instances with up to 40 nodes and 69 required edges.

A related problem is the CARP with time-dependent ser-
vice costs, where the service cost associated with a task,
which is usually constant, is replaced by a piecewise linear
function. This problem, motivated by winter gritting appli-
cations where the timing of each intervention is crucial, is
addressed by Tagmoutiet al. [188]. A heuristic based on vari-
able neighborhood descent is presented and provides fast and
good results when tested over instances derived from gdb and
egl CARP benchmark instances.

The split-delivery capacitated arc-routing problem is a
variant of the CARP in which an edge demand can be ser-
viced by several vehicles. Belenguer et al. [29] present a lower
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bound computed with a cutting-plane algorithm and an evo-
lutionary local search reinforced by a multi-start procedure
and a variable neighborhood descent. Computational results
reported on instances derived from sets 2–4 (gdb, val, egl)
of CARP benchmark instances attest to the quality of these
methods.

Muyldermans and Pang [150] introduce a new extension
of the CARP, the multi-compartment capacitated ARP, where
the required edges have a demand for different products,
and multi-compartment vehicles are available to co-distribute
these commodities. The motivation for the study is the eval-
uation of savings in distribution or collection, should such
vehicles be used. A local search algorithm is presented. It
begins with a solution from a savings heuristic, which is suc-
cessively improved by investigating a combination of local
search moves. Neighbor lists and marking are used to speed
up the searches, and the method is combined with a guided
local search. The performance of the algorithm was tested in
medium-sized instances (with one and two commodities and
77–140 nodes, 98–190 edges, 51–190 being required). The
results were very good for the original instances but slightly
worse in both solution quality and computation times for the
transformed instances. Further experiments were conducted
on a new set of generated instances (with 312 edges and 2–4
commodities) to gain more insight into the potential bene-
fits of deploying multi-compartment vehicles. The authors
conclude that there would be an improvement over sepa-
rate collection strategies and that the improvement increases
when: (i) the number of commodities is higher; (ii) the vehi-
cle capacity increases; (iii) the items are less bulky; (iv) more
edges have a demand for all commodities; (v) the required
edge density is lower; and (vi) the depot is more centrally
located on the road network.

3.6. Stochastic and Dynamic K-ARPs

Attention has also been given to the uncertainty involved in
arc route planning. Stochastic factors are frequently present
in tasks’ demand, service or deadheading costs. Such issues
impose considerations about the objective to be followed
while looking for a set of routes. In these cases, minimization
of the total average cost should probably be replaced by an
objective that also promotes the construction of a set of routes
that is robust to fluctuation. Laporte et al. [125] develop an
adaptive large neighborhood search heuristic for the CARP
with Stochastic Demands (CARPSD). The demand quanti-
ties are modeled by independent random variables with a
known probability distribution. This reflects a situation in
which route failure may occur whenever the effectively col-
lected demand exceeds the vehicle capacity. Computational
results over instances derived from CARP gdb benchmark
instances are provided. The algorithm solutions’ values are
better than those obtained by first solving a deterministic
CARP and then computing the expected cost while using
random variables to describe demands.

Dynamic problems are often used to represent real sit-
uations where either data or the base network changes

dynamically. Although stochastic variables could better rep-
resent such occurrences, the dynamic problems studied focus
on deterministic cases. This approach is followed by Tag-
mouti et al. [189] in their definition of dynamic CARP with
time-dependent service costs. Their aim is to get closer to
real-world applications by taking updated weather reports
into account while creating the routing plan. This challenge
was previously addressed by the same authors [188], as men-
tioned in the previous subsection. For the dynamic problem,
the authors propose an adaptation of the variable neigh-
borhood descent heuristic that was developed for the static
version. Computational experiments are reported over sim-
ulated instances (with 25–100 nodes and 36–162 required
arcs) and reveal the heuristic to be a valuable tool to convey
information updates to the system, although more research
should be devoted to the time trade-off between optimization
and the availability of new solutions.

In addition to weather, other types of events, such as traffic
jams, traffic accidents or vehicle breakdowns, may render a
planned route non-executable. Moreover, after the vehicles
are on the road, sometimes new demands emerge. These sit-
uations require the ability to quickly reschedule, that is, draft
another plan based on the current state of the system. In this
context, Monroy-Licht et al. [149] introduce the reschedul-
ing ARP, which considers adjustments to the initial routing
itinerary when one or more vehicle failures occur during the
execution stage and the original plan must be modified. They
measure the disruption cost by accruing the number of edges
moved to a different route in the modified schedule. Differ-
ent policies considering operational and disruption costs are
analyzed in the rerouting phase, and mixed integer program-
ming formulations are presented to model these policies. A
heuristic procedure is also given. Computational tests were
conducted on two types of instances: those generated from
some CARP benchmark instances (96 selected from gdb, val,
egl, eglL, bmcv), and larger instances based on the real net-
work of the Eastern Townships, Quebec (with 140 nodes and
187 edges, all required, and tried with 9–12 vehicles). They
conclude that operational and disruption costs are conflicting
objectives and that a good trade-off can be found by using a
formulation that minimizes both.

Yazici et al. [207] address Dynamic path planning for
CARP (DyCARP) with multi-robot sensor-based coverage.
Disruption arises when, while executing a planned path,
robots hit unexpected obstacles and require rapid re-planning.
The proposed methods were tested with real instances with
up to 90 nodes and 1–10 robots, in reduced computing times
of under 5 seconds. A memetic algorithm with a split scheme
for solving a Dynamic CARP (DyCARP) can also be found in
[127]. This method was tested on examples with undirected,
directed and mixed networks containing up to 100 nodes, 328
links, and 8 vehicles.

3.7. Tactical and Strategic Extensions

Tactical and strategic decisions are long-term decisions,
that is, those that stay stable during long periods of time.
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Focusing on these long-term decisions in arc routing envi-
ronments, we identify studies from 2010 to the present that
involve location, periodic, and sectoring or districting prob-
lems. These problems’ characteristics are summarized and
the corresponding papers are listed in Table 5.

3.7.1. Location ARPs. Location ARPs (LARPs) con-
sider both the location of facilities (e.g., depots and inter-
mediate depots) and route planning, since separating the
two problems may lead to suboptimal solutions. Usually the
capacitated version is considered on a weighted, connected
and undirected network with a homogenous fleet of vehicles.
All vehicles may be assigned to any depot, but each begins
and ends its only tour at the same depot. A fixed cost per
vehicle may also be considered. The aim is to identify which
depots should be opened and which clients each one should
service so as to minimize the total cost. Additionally, the
vehicles’ capacity must be met; each client is serviced only
once and no split deliveries are allowed; each vehicle per-
forms one trip at most; and the vehicles assigned to a depot
must be enough to meet clients’ needs.

Not many works can be found linking location and arc
routing. This much can be confirmed in the surveys of Lopes
et al. [131] and Prodhon and Prins [162]. These surveys focus
on state-of-the-art location routing, and their contents were
categorized according to the type of methodology applied.
In their conclusions, these authors suggest possible research
directions for location routing, including the arc routing case.

A study by Doulabi and Seifi [79] is among the few
references on LARP since 2010. These authors study a
mixed capacitated LARP, thus combining depot location,
fleet assignments and arc routing decisions. The potential
depot locations have opening costs and are limited in num-
ber. Clients and their demands are given and must be met.
The proposed methodology is based on two different inte-
ger programming models for the single and multi-depot
cases, respectively, derived from one in [96]; some related
relaxations; and finally, an insertion heuristic for the CARP
jointly with a location-allocation heuristic, within a sim-
ulated annealing metaheuristic. The proposed relaxations
are useful for providing good lower bounds. Computational
results over adapted MCARP benchmark instances (mval and
lpr) provide, according to the authors, “good quality solu-
tions for multi-depot LARP in reasonable time.” The paper
also includes an analysis of the cost savings obtained by
aggregating location with routing decisions.

Lopes et al. [132] present a model and constructive and
improvement heuristics to use within different metaheuris-
tics, namely, a tabu search, a GRASP, and a third approach
that takes into consideration the advantages of the first
two. New instances, derived from known CARP bench-
mark instances, were developed and are available online (see
LPFS_LARP in Table 9), as is the related software. Lopes et
al. [132] state that this new set of instances (with up to 10
potential facilities, 140 nodes and 190 required edges) seems
to be representative of several different cost configurations
and thus may be used to test LARP methodologies.

Although the issue is combined with a sectoring prob-
lem, Chen et al. [52] also address depot location, presenting
a mathematical model, a branch-and-cut algorithm and a
heuristic. Their work will be detailed in Section 3.7.3.

Riquelme-Rodriguez et al. [167] add inventory constraints
to a periodic LARP in order to identify the best location for
water depots, which are used by vehicles periodically spray-
ing the roads to eliminate dust in an open-pit mine. The aim
is to minimize the routing and the penalty costs incurred as a
result of the lack of humidity on roads. Vehicles need to refill
during their duty. The roads must be sprayed often during
the given time horizon, which justifies the periodic aspect
of the problem. A model adapted from one developed by
Riquelme-Rodriguez et al. [166] is described, and a heuristic
is also proposed. First, there is the assignment of edge ser-
vices to vehicles (the allocation phase), completed in such a
way that each edge is serviced by only one vehicle during
the time horizon; second depots are assigned to nodes (the
location phase), which is done in two different ways. Finally,
the routing phase takes into account results obtained in the
first two steps. Real mine instances (considering 3–5 vehi-
cles, 21–51 nodes and 22–60 edges) from [166] were used to
validate the methodology.

Huber [113] have recently proposed a bi-objective LARP.
The first objective consists of the usual LARP minimization
costs, that is, both the traveling and opening cost. The second
objective is the minimization of the sum of lead times in
servicing clients. The tradeoff between the two objectives
is investigated over instances adapted from [132], with the
same dimensions. A variable neighborhood search approach
is designed, and results are reported and analyzed.

3.7.2. Periodic ARPs. Periodic ARPs represent a class
of problems where repeated actions need to be performed
while respecting some periodicity and/or along a time hori-
zon. These are considered tactical since periodicity decisions
in client servicing are usually done at a tactical level, that
is, they should remain unchanged for long time periods. The
aim is to construct arc routing tours to be performed during
the time horizon while minimizing the total cost. Clients in
the network links must be serviced with a given periodicity,
or a fixed number of times during the time horizon. In each
period required links are serviced once at most. A fleet of
homogeneous and capacitated vehicles is available. Instance
dimensions are referred by #/#/# to indicate the maximum
values for nodes/edges/(number of required services during
the time horizon).

Mei et al. [144] seek two objectives: the minimiza-
tion of the number of vehicles and the usual minimization
of the total routing cost. A memetic algorithm is devel-
oped, including a new solution representation scheme and
a new crossover operator. A route-merging procedure is
also embedded in the overall algorithm, yielding a positive
impact on the results. Results obtained over some previously
adapted arc routing instances (smaller ones, adapted from
gdb and val, with 50/194/300; and real-world data set with
255/347/1,062 or 255/375/1,138) were used to successfully
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compare the proposed methodology with some alternative
methods published before 2010.

Zhang et al. [210] follow the same strategy and establish
a hierarchical order for the same two objectives: to minimize
first the number of vehicles and then the cost. The memetic
algorithm in this work is improved by integrating a route
decomposition step. The crossover operator and the local
search procedure are applied. The population initialization
phase is also improved to include both heuristic and ran-
dom solutions. Instances of [144] were tried, and the authors
conclude that this new procedure outperforms the previous
ones and shows great effectiveness in solving large-sized
instances.

In their work on the PARP, Monroy et al. [148] add irregu-
lar services, which they claim are well suited to applications
such as road maintenance and street security surveillance.
The major difference between their scenario and the basic
PARP is that roads are serviced a given number of times in
sub-periods along the time horizon and according to a hier-
archy of link classes. A mathematical model, where binary
variables represent the assignment of each street segment to
a route, and a cluster-first, route-second heuristic are pre-
sented. A second phase includes the resolution of a single
vehicle ARP, and the related model is also described. New
instances were adapted from CARP benchmark instances
(gdb, with 27/110/187 and val, with 50/194/329) and may
be downloaded (see MAL_PARP in Table 9). Three new sets
of instances were generated: inso, with 10/19/36; insp, with
19/44/111; and ins, with 50/98/243. Concerning the results,
it is observed that: the largest gap from upper bound is 24%
with running times of up to 32 minutes; 82% of the instances
verify a gap lower than 15% and in 85% of them the CPU
time is under 1 minute; and finally, the heuristic was able
to find optimal solutions for four out of the eight smaller
instances, the gap being inferior to 11% for the remaining
instances.

Riquelme-Rodriguez et al. [165, 166] focus on the PARP
with inventory constraints. Arcs in the network act as clients
and consume a substance (e.g., water) over time until the
vehicle arrives and replenishes the substance, thus justifying
the concept of an inventory level. Each time the vehicle ser-
vices the arc, the inventory level is reset, meaning that routing
and inventory decisions need to be made simultaneously. As
examples of applications we can find: (i) dust suppression
from roads in open-pit mines or forest roads; and (ii) plant
irrigation along sidewalks, where the roads of the network
are periodically watered by a vehicle until a certain humidity
level is reached. Water is then consumed (or evaporated) over
time, while the vehicle does not again deliver water. The quan-
tity of delivered water may either be fixed or variable, and the
frequency of service is also considered within a given time
horizon. A fleet of homogeneous sprayer trucks, with fixed
capacity, is available at a depot. In the first paper, Riquelme-
Rodriguez et al. [165] study models for both scenarios and
validate them through computational results obtained with
CPLEX. The first model considers the routing and the inven-
tory problems combined. It identifies the edges to service as

well as the quantity of water to be delivered at each edge.
The second model suggests the routes to follow to distribute
a fixed quantity of water. The authors created 10 instances
specifically for the watering problem in open-pit mines, and
23 more were adapted from a set of CARP gdb benchmark
instances.

In their ensuing work, Riquelme-Rodriguez et al. [166]
investigate heuristics for the same problem. A new model
is proposed considering a combination of two minimization
objectives: an inventory one including a penalty for the lack
of humidity, and a routing one with watering and travel costs.
The heuristic, to tackle larger instances, is an adaptive large
neighborhood search that dynamically uses several destroys
and repair operators. Initial solutions are obtained with a
cluster-first, route-second procedure. The model may solve
smaller instances (with up to five trucks and 30 time periods),
and the heuristic provides solutions for larger instances. For
the reality-based instances, however, the heuristic generates
solutions very similar to the initial one, with improvements of
up to 10%. These results were obtained over adapted CARP
gdb instances available online (see B_CARP in Table 9) and
over new instances based on real open-pit mine networks with
three or five trucks, 21–51 nodes and 22–60 edges.

Huang and Lin [112] apply ant colony optimization to
a PK-ARP with Refill Points (PK-ARP-RP), with the inclu-
sion of refill points generalizing the previous problems. Refill
points are nodes where vehicles make a pit stop to recover
their capacity. Huang and Lin [112] formulate the problem
and transform it into an equivalent vehicle routing problem,
making it possible to apply a known ant colony algorithm
incorporating a local search procedure. The known gdb,
val CARP benchmark instances (B_CARP in Table 9) are
adapted, and larger ones generated from a real case study in
the city of Kaohsiung, Taiwan (with 212 nodes and 321 arcs)
are also applied. The authors point out that promising results
were obtained in competitive computational times.

3.7.3. Sectoring Problems. Sectoring (or districting)
problems are routing problems encompassing the subdivi-
sion of the networks, resulting in smaller and more easily
tractable problems. Usually the road maps associated with
real case studies (snow plowing, waste collection, street oper-
ations, etc.) are so huge that they cannot be used directly,
and they become the base networks of such NP-hard prob-
lems. Sectoring emerges as a natural way to deal with such a
difficulty. Mixing sectoring with arc routing is an extra chal-
lenge, as two NP-hard problems are involved. To try to avoid
sub-optimization, it makes sense to simultaneously embrace
both problems. Moreover, even when sequentially consid-
ered, sectoring must take some characteristics into account
to avoid the development of routes may never be applied to
a real situation at all. In fact, solutions need to be visually
attractive for practitioners. Although attractiveness is a dif-
ficult concept to ascertain, we may consider the following
characteristics as a measure of a solution’s attractiveness:
balance, compactness, connectivity or connectedness, and
non-overlapping, each and all promoting fairness in assigning
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jobs to different crews. Balance usually refers to similar times
in serving different sectors, or similar workloads. Compact-
ness represents a small diameter square/round shape, which
reduces unproductive travel time. Connectedness refers to the
avoidance of deadheading and vehicle crossings, while non-
overlapping has to do with the avoidance of crossed paths
among the vehicles.

Generally, a Sectoring ARP (SARP) aims to distribute all
the required network links into sectors (smaller zones). Each
link is assigned to only one sector, to be serviced by one
vehicle only. A fleet of homogeneous vehicles with a fixed
capacity is available at a depot. Sectors must satisfy some
predefined characteristics, and the cost of vehicle routes in
all sectors is also considered.

SARP methodologies often resort to route cost estimates to
assign the network links to the different sectors. Good ways to
estimate these values are therefore highly valuable. Bostel et
al. [45] develop a simple way to compute approximate values
for the length of an optimum CPP on undirected or directed,
strongly connected planar graphs. The approximation formu-
lae were obtained from a multi-linear regression analysis. The
authors note that even though some problems are known to
be easily solvable, being able to predict their optimum value
is of significant importance for large instances. Moreover,
these computations are of major relevance, for example, in
sectoring problems, since good estimates for these values are
needed in order to balance the different sectors without first
identifying the optimal solutions.

Butsch et al. [48] look for connected sectors including all
required links and consider as soft criteria: workload balance
related to the routing distance; small deadheading; and local
and global compactness. These latter are tackled through a
weighted objective. A model for the sectoring problem is
developed, and a two-phase algorithm for the arc district-
ing over an undirected network is also proposed. Firstly, an
initial solution is achieved, then it is improved within a two-
stage iterative procedure combining a tabu search and an
adaptive randomized neighborhood search. Different strate-
gies are applied to improve balance, deadheading time, and
local and global compactness. The methodology was tested
on instances generated from German road networks, which
differ in dimension, the aspect ratio of the selected area, and
whether they result from urban or rural areas. Instances with
up to 400 edges have 4–8 districts; those with 400–600 edges
have 5, 7, 8, or 10 districts; and for those with more than
600 edges, 6, 8, 10, or 12 districts are considered. The num-
ber of zones increases with the number of edges. Butsch et
al. [48] conclude that results confirm the efficiency of their
methodology.

García-Ayala et al. [89], also motivated by arc territory
design, proposed a new formulation where new parity con-
straints on nodes are derived to favor the identification of
Eulerian districts, that is, districts as close to Eulerian graphs
as possible. Arc partitions inducing odd degree nodes are
therefore penalized. The graph is considered planar and
undirected, and constraints are imposed to obtain balanced
districts in respect to service demand within an allowed

tolerance. A branch-and-cut algorithm is developed and
tested on 80 instances (with up to 401 nodes, 834 links and six
depots), adapted from lpr benchmark instances (B_MCARP
in Table 9), over which the effect of: (i) parity constraints;
(ii) objective function weights; and (iii) number and location
of depots are analyzed. The authors claim the model to be
useful at a tactical level, as the characteristics of the obtained
sectors are of interest.

Rodrigues and Ferreira [169], motivated by a waste col-
lection application, tackled the SARP, where the balance
criterion is met by the number of inhabitants. Connectedness
and compactness of the sectors are also among the objectives.
A two-phase approach is devised, including sectoring fol-
lowed by an arc routing phase. Each sector is serviced by only
one route per vehicle. Intermediate facilities are available but
have a limited capacity. A new sectoring methodology is pro-
posed, inspired by electromagnetism: required links will be
assigned to a sector if there is some “attraction” between
them; a “repulsion” measure is also defined for services to
be assigned to different sectors. Borrowed from electromag-
netism, Coulomb’s law is adapted to measure “attraction”
and “repulsion” when constructing sectors, which are then
evaluated in terms of the considered objectives: balance, com-
pactness, and connectedness. More sectors are designed as
needed. For the routing phase, a model for the mixed CARP
with limited multiple landfills (referred to in Section 3.4)
is considered. Results were obtained from adapted CARP
gdb and mval benchmark instances and from generated data
for real base networks at Monção, Portugal (see RF_Waste
in Table 9). Monção instances have 40–200 nodes, 31–165
required links, 31–124 deadheading links, and two disposal
facilities. In addition to the effectiveness of its results, this
method also has the advantage of allowing decision makers
to define levels of “attraction” and “repulsion,” thus meet-
ing their expectation of having some control over the type of
outcome.

Keeping the same motivation in a slightly different con-
text, Cortinhal et al. [71] built two Local Search (LS)
metaheuristics for the SARP. One follows a hill climbing
base methodology, while the other stems from a tabu search.
Both heuristics are tailored to improve the attractiveness of
the solutions while maintaining the good features of the initial
solution, generated with a constructive algorithm. Attrac-
tiveness is measured through a function combining three
characteristics: total routing time, the number of connected
components and workload time imbalance. Parameters for the
tabu search were tuned via IRACE software [133]. Adapted
CARP lpr benchmark instances (B_MCARP in Table 9), as
well as instances generated from a real network in Seixal,
Portugal, were used to assess performance. Seixal instances
have 106 nodes, 214 links including 84 required edges and
52 required arcs, and 2–4 sectors. High imbalance values
observed for the initial solutions are repaired with the LS
procedures, and the tabu search seems to be a better option
for providing “nicer” sectors for a real application.

Also with regard to the “nice” shape of tours, we refer
to Constantino et al. [59], already mentioned in the CARP
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section (Section 3.3), who develop an approach including a
set of measures for shape evaluation.

Another concern in daily maintenance operations on road
networks is sector design, as pointed out by Chen et al. [52].
The decision problem involves not only the assignment of
road segments to sectors, but also the location of depots.
Moreover, routing operations are taken into account so as to
evaluate both deadheading and the required number of vehi-
cles. The problem, which also includes location arc routing,
as mentioned in the LARP section (Section 3.7.1), is modeled
and solved with a branch-and-cut algorithm. Additional con-
straints are set to impose a service level. This service level is
measured as the maximum percentage of services allowed to
exceed a given maximum distance from their assigned depot.
Medium- and large-sized instances are solved with a three-
phase algorithm: (i) the clustering phase, in which arcs to
be serviced by a single vehicle are clustered; (ii) clusters of
arcs are assigned to potential depot sites while meeting the
service level imposition; (iii) localization of depots, in which
the final localization of depots needed to guarantee the over-
all service level is decided upon. Moreover, solutions are
evaluated not only regarding service cost, but also based on
imbalance, overlapping and compactness. Random instances
(with 12–20 nodes and 23–61 arcs) and instances based on
the city of Shanghai, China (with 31 nodes and 88 arcs), were
generated, and some sensitivity analysis was performed by
varying the service level and the percentage of two-way roads
on instances with 25–42 nodes and 50–157 arcs. The authors
conclude that the heuristic provides nicer solutions than the
model with regard to performance measures and in the short-
est computational times. They also conclude the heuristic is
able to provide high-quality solutions.

Very recently, Lum et al. [135] proposed a new way to
find an arc partition of a network promoting compact and
separate areas. The undirected min-max K windy RPP is con-
sidered to identify K vehicle tours, minimizing the length of
the longest route. The three criteria taken into account to
visually identify appealing routes are: compactness, contigu-
ity and geographic separation (also called non-overlapping).
A new metric is defined, taking all criteria into account.
A cluster-first, route-second heuristic is applied to produce
compact and separated routes. Results are reported for two
sets of instances: one set based on real-world street networks
(San Francisco, CA, USA, with 703 nodes and 840 edges;
Washington, DC, USA, with 593 nodes and 663 edges; Lon-
don, UK, with 855 nodes and 1,004 edges; Istanbul, Turkey,
with 693 nodes and 865 edges; Perth, Australia, with 532
nodes and 592 edges; Auckland, New Zealand, with 1,209
nodes and 1,297 edges; Helsinki, Finland, with 1,310 nodes
and 1,540 edges; Vienna, Austria, with 506 nodes and 586
edges; and considering 3, 5, or 10 vehicles with different
depot locations) and a second set of artificially created rect-
angular networks (with 225–576 nodes and 420–1,104 edges;
3, 5 or 10 vehicles with different depot locations). The attrac-
tiveness of the solutions is measured with the newly devised
metric and with the metrics in [59]. The constructive heuris-
tic developed is compared with metaheuristics from [35] and

was able to find routes with appealing visual qualities, with
only a small increase in the min-max objective function value.
Lum et al. [135] will make part of the code available in an
open-source arc routing library (OAR Lib) (see LGCS_AR
in Table 9).

3.8. Multiple Vehicle General Routing Problems
(K-GRPs)

This section reports recent developments in GRPs with
multiple vehicles (K-GRPs) that combine arc routing and
node routing. A central problem of this type is the Mixed
Capacitated GRP, MCGRP, sometimes also called the Node,
Edge and ARP. The base network is a mixed one, and dif-
fers from the Mixed CARP in that not only do a subset of
arcs and edges require service, but a subset of nodes requires
service as well. Required nodes thus have an associated ser-
vice cost and demand. The motivation to study this problem
derives from its flexibility in capturing details from real-world
routing applications.

The problems’ characteristics as well as corresponding
papers are summarized in Table 6.

In [24] a lower bounding procedure is developed for the
MCGRP and represents a further development of the multi-
ple cuts node duplication lower bound algorithm known for
the CARP. To assess the quality of the obtained bounds, two
new sets of benchmark instances were proposed, namely:
one derived from some CARP instances with 11–140 nodes
(4–50 required), up to 51 edges (51 required), 22–380 arcs
(7–380 required); and another drawn from six real-life cases
involving the design of carrier routes for home delivery of
subscription newspapers and other media products in Nordic
countries, with 563–1,120 nodes (120–347 required) and
815–1,450 edges (120–486 required). A third set of MGRP
benchmark instances was also used, with 11–115 nodes and
29–311 links, 3–93 required nodes, up to 94 required edges
and 149 arcs. All data sets are available online (see SIN-
TEF_CGRP in Table 9) and detailed in [108], where upper
bounds obtained with spider software (SINTEF_CGRP in
Table 9) can also be found. These upper bounds were used
to compute the gaps. Regarding computational test results,
authors believe the large average gap value (25.1%) to come,
in fact, from the upper bound side.

To close this gap from the upper bound perspective,
Dell’Amico et al. [75] propose an adaptive iterated local
search, and Bosco et al. [43] develop the first matheuristic for
the MCGRP. The hybrid metaheuristic of [75] is a new iter-
ated local search including an adaptive large neighborhood
search combined with further intensification. Computational
experiments show that the proposed metaheuristic is highly
effective on five published benchmark sets for the MCGRP,
the sets used by Bach et al. [24] and also some instances
from two sets derived by Bosco et al. [44]. Good behav-
ior of the metaheuristic is reported also on isolated CVRP
and CARP instances (gdb, val, egl, bmcv). The matheuristic
of [43] involves a large number of neighborhood structures
and draws upon the branch-and-cut algorithm developed
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TABLE 6. K-GRPs’ characteristics and related published papers.

Network G = (N , A ∪ E)

Problem Objective U/D/M AR ER NR Other characteristics Papers

K-GRP Min(workload
balance; total time)

U/W AR = ∅ ER ⊂ E NR ⊂ N Turn penalties; Forbidden turns [146]

U AR = ∅ ER ⊂ E NR ⊂ N City-courier routing and scheduling; Time
windows

[51]

MCGRP

Min(cost)

M AR ⊂ A ER ⊂ E NR ⊂ N

[24, 25, 43, 44,
75, 115]

Turn penalties; Forbidden turns [47]

Min(cost; makespan) makespan= (most – least) costly route [137]

Min(cost; imbalance) 4 alternatives for the imbalance [103]

MCGRPSD Min(cost) M AR ⊂ A ER ⊂ E NR ⊂ N Stochastic demands [36]

A fleet of K homogeneous vehicles with fixed capacity is assumed. U/D/M/W – Undirected/Directed/Mixed/Windy.

by Bosco et al. [44] for improving the substructures of a
solution obtained by considering two routes at a time. The
effectiveness of the heuristic is demonstrated through an
extensive computational study. Two sets of instances, with
up to 10 vehicles, were generated by Bosco et al. [44]:
one with 24–50 nodes (7–37 required), 25–106 arcs (13–97
required) and 12–44 edges (6–33 required); and a second with
7–22 nodes (3–15 required), 16–68 arcs (4–25 required) and
2–11 edges (1–8 required). A third set of MGRP benchmark
instances was also used, with 11–140 nodes (4–50 required),
0–51 edges (0–51 required) and 22–380 arcs (7–380
required).

When discussing exact methods for MCGRP, we must
mention the works of Bosco et al. [44], Irnich et al. [115] and
Bach et al. [25]. Bosco et al. [44] present a three-index integer
programming model, derived from the CARP, and capacity
and odd cut set constraints, to be incorporated in a branch-
and-cut algorithm. Computational experiments are shown on
the two sets of instances here proposed for the MGRP, achiev-
ing 56 optimums out of 114 instances in one set and 45 out
of 150 in the other set. A group of 34 MCARP instances was
also used, and optimality was proved for 29 of them. Irnich et
al. [115] develop a new mathematical model based on two-
index variables and a two-phase branch-and-cut algorithm,
which uses an aggregate formulation to develop an effec-
tive lower bounding procedure. This procedure also provides
strong valid inequalities for the two-index model. Exten-
sive computational experiments over benchmark instances
are included. Also using this formulation, Bach et al. [25]
propose a branch-and-cut-and-price algorithm. The method
is compared, through extensive computational experiments,
with the other two above-mentioned algorithms. Nearly all
the previously mentioned MGRP benchmark instances were
used. Usually, the algorithm produces strong lower bounds
and, for instances with many vehicles, performs better than
the algorithm of [44], which is more sensitive to the num-
ber of vehicles because it is based on a three-index model.
When working with MCGRP instances derived from mval,
the algorithm of [115] seems to be right choice.

Other K-GRPs. Bräysy et al. [47] and Micó and Soler
[146] address the capacitated GRP (CGRP) with turn penal-
ties and forbidden turns. The first authors do it on a mixed
graph while the second authors consider a windy version.
The work of [146] proposes a transformation of the windy
CGRP with turn penalties into an asymmetric capacitated
vehicle routing problem. Likewise, Bräysy et al. [47] present
a transformation of the MCGRP into an asymmetric capaci-
tated vehicle routing problem and also use it to obtain feasible
solutions with a memetic algorithm for node routing. Compu-
tational results were obtained on generated sets of MCGRP
with turn penalty instances, with up to 700 arcs, 160 edges and
160 nodes, or 225 required arcs, and 28 required nodes. The
algorithm was able to produce feasible solutions for all 336
instances within reasonable computing times. Concerning the
quality of the achieved solutions, extensive experiments were
performed on node routing benchmark instances with quite
impressive results.

Salazar-Aguilar et al. [173] introduce the Synchronized
CGRP (SyCGRP), motivated by a real application arising
in road marking operations (Section 4.4.4). Two types of
vehicles are involved, those performing the service and those
refilling them. Synchronized routes must therefore be found
for all vehicles. An adaptive large neighborhood metaheuris-
tic combining seven destroy/repair operators is developed
and evaluated over a large set of instances (up to 400 nodes
and 1,500 arcs), comparing three different replenishment
policies.

In the MCGRP, the only objective usually pursued is the
minimization of the total routing cost. However, in real appli-
cations, other intents are also relevant. One such objective is
balanced routes, which may be achieved through minimizing
the difference between the most and the least costly routes,
also known as makespan minimization. Mandal et al. [137]
study a bi-objective MCGRP considering the two previously
mentioned objectives. They present a mathematical model
and a multi-objective evolutionary algorithm designed to gen-
erate the optimal/near optimal Pareto frontier with a good
spread of non-dominated solutions in a single optimization
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TABLE 7. Terminology for K vehicles’ arc routing problems with profits.

Problem Objective Constraints

Name Max Max Min Multiple Travel time Min. bound
Initials proposed (profit) (profit-cost) (cost) visits limit collected profit Capacity

CTOARP Capacitated TOARP � � �
KP-ARP Multiple Profitable ARP � sometimes
KP-ARPM KP-ARP with Multiple visits � � �
K-MBPARP Multiple Minimum Bound collected Profit ARP � �
TOARP Team Orienteering ARP � �

Undirected, Directed, Mixed or Windy graphs may be emphasized with the respective initial (U, D, M, W) before the name (for instance, the mixed KP-ARP
is represented by MKP-ARP).

run. The proposed algorithm was tested on twenty-three stan-
dard MCGRP benchmark instances, with 11–115 nodes and
29–311 links, 3–93 required nodes, up to 94 required edges
and 149 required arcs. The obtained results point to the
effectiveness of the methodology.

Later on, Halvorsen-Wearea and Savelsbergh [103] stress
that several concepts may be applied to the definition of
balanced routes. They thus propose alternative definitions
and investigate their impact. Four alternatives are tried: (i)
minimize the difference between the longest and the short-
est route travel distances; (ii) minimize the travel distance
of the longest route; (iii) minimize the sum of the differ-
ences between the travel distances and a desired target route
travel distance; and (iv) minimize the sum of the differences
between the travel distances and the average travel distance.
Following tests on MCGRP benchmark instances (with 8–12
nodes (3–8 required), 18–34 arcs (4–11 required), 2–5 edges
(1–3 required) and 3–5 vehicles), Halvorsen-Wearea and
Savelsbergh [103] conclude that the choice among these alter-
natives has significant effects on the Pareto front and that (i)
seems to be the most robust alternative.

The MCGRP with stochastic demands is studied in [36]. A
chance-constrained integer programming formulation of the
problem is presented, that is, an integer formulation where
instead of a constraint, which sets a vehicle capacity that can-
not be exceeded, a threshold for the probability of respecting
capacities is imposed. An equivalent deterministic formula-
tion is also derived. A branch-and-cut and a heuristic are
developed, the first providing the optimal solution to small-
sized instances. The effectiveness of the methods is assessed
on a probabilistically constrained version of the benchmark
instances for the MCGRP, with 7–27 nodes (3–11 required),
32–84 arcs (6–29 required), 4–13 edges (1–9 required) and
4–17 vehicles.

3.9. Multiple Vehicle Arc Routing Problems with Profits

As with the single vehicle case, we devote a section to
recent studies on multiple vehicle ARPs with profits. In so
doing, we follow the suggestion of [17] in their survey of sin-
gle and multiple ARPs with profits, since current terminology
is far from consensual and often the same problem is referred

to by different names. We present the terminology in Table 7.
On one hand, problems that maximize gross profit are defined
as Team Orienteering ARPs (TOARP). On the other hand,
we call Multiple Profitable ARPs (KP-ARPs) problems max-
imizing net profit, that is, the difference between the collected
profit and the travel cost, and sometimes also including a time
limit constraint for route duration. Lastly, Multiple Minimum
Bound collected Profit ARPs (K-MBPARP) are problems
that minimize cost with a requirement for a minimum profit
threshold.

The works’ characteristics, as well as corresponding
papers, are summarized in Table 8.

3.9.1. Team Orienteering Arc Routing (TOARP). The
recent increase in the number of papers on orienteering ARPs
can be noticed just by comparing the references in the survey
by Vansteenwegen et al. [196] with those in a survey 5 years
later [99].

Archetti et al. [13] define a team orienteering ARP on an
undirected graph under the designation of undirected CARP
with profits. A profit and a demand are associated with each
profitable edge, and a travel time is assigned to each edge
on the graph. A fleet of capacitated vehicles is available to
service the profitable edges, and a maximum duration for a
route is also imposed. The profit from an edge is collected
only once and by the same vehicle that services its demand.
The objective of this problem is to find a set of routes, start-
ing and ending at the depot, that satisfy the constraints on
route duration and vehicle capacity, further maximizing the
collected profit. In terms of exact algorithms, a branch-and-
price algorithm is presented in [13]. The method was tested
on two groups of 102 instances, each derived from val. Both
groups have 24–50 nodes, 34–97 profitable edges, and 2–4
vehicles, but differ in their capacity and maximum duration of
a tour. For the group of instances that do not allow long routes
(that is, with low-capacity vehicles and shorter time limit),
instances with up to 97 profitable edges can be optimally
solved. A number of metaheuristics can be chosen to find
feasible solutions to the problem: Archetti et al. [13] develop
a variable neighborhood search and two tabu search methods
(one enlarges the solution space, allowing infeasible solu-
tions), and Cura [72] proposes a bee colony approach. These
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TABLE 8. Multiple vehicle problems with profits: characteristics and related published papers.

Network G = (N , A ∪ E)

Problem Objective U/D/M/W AR ER NR Other characteristics Papers

KP-ARP

Max(profit-cost) U AR = ∅ ER ⊂ E NR ⊂ N Time limit constraint; Clients on nodes and links [10]

Max(profit);
Min(cost)

U AR = ∅ ER ⊂ E NR = ∅ [209]

Max(profit-cost) M AR ⊂ A ER ⊂ E NR = ∅ Time limit constraint [32]

Max(profit from
coalition)

D AR ⊂ A ER = ∅ NR = ∅ Collaboration ARP; Mandatory tasks and tasks to
be dealt with in collaboration to improve profit

[86]

KP-ARPM Max(profit-cost) D AR ⊂ A ER = ∅ NR = ∅ Profit collected more than once but upper limited [84]

Max(weight) D AR = A ER = ∅ NR = ∅ Fixed or unfixed depots; Lower and upper limits
for traversing links; Time limit per tour

[176]

K-MBPARP Min(cost) M AR ⊂ A ER ⊂ E NR = ∅ Profit lower bound [32]

TOARP Max(profit)

U AR = ∅ ER ⊂ E NR = ∅
Profit collected only once; Mandatory and
optional tasks; Time limit per tour

[13, 72]

D AR ⊂ A ER = ∅ NR = ∅ [12, 18, 164]

M AR ⊂ A ER ⊂ E NR = ∅ [32]

U/W AR = ∅ ER ⊂ E NR ⊂ N Clients on links and nodes; profit collected once [91]

A fleet of K homogeneous vehicles with fixed capacity is assumed.
U/D/M/W – Undirected/Directed/Mixed/Windy.

algorithms were tested on the above-mentioned instances.
The VNS proved to be more effective when compared with
the tabu search (with an average error below 1% compared
to the best solution values). In [72], results show solutions of
equal quality with short CPU times.

A TOARP is also defined in [18], this time on a directed
graph and considering that a profitable arc may be either
required or optional, that is, service to some arcs is manda-
tory, while other arcs are only serviced if they are worth
it. Archetti et al. [18] propose a formulation and study a
relaxation of its associated polyhedron. A branch-and-cut is
presented, embedding families of valid inequalities and facet-
inducing inequalities. Riera-Ledesma and Salazar-González
[164] offer exact algorithms to solve the problem, after trans-
forming it into a node routing problem, namely: two column
generation approaches, a branch-and-price and a branch-and-
price-and-cut. A matheuristic can be found in [12], where
the algorithm successfully combines the solution of inte-
ger models with a tabu search and a diversification phase
allowing deep exploration of the solution space. All three of
these papers, [18], [164] and [12], offer computational exper-
iments on the same set of instances derived from undirected
RPP benchmark instances (with 11–100 nodes, 42–846 arcs
(0–64 mandatory, 1–121 optional), and 2–4 vehicles) in [18].
Riera-Ledesma and Salazar-González [164] report a certain
complementarity between branch-and-cut and column gener-
ation approaches, and point out that in instances with a tight
time limit, constraint column generation works better.

Where mixed graphs are concerned, a valid and an aggre-
gated model for TOARP can be found in [32]. Both models
are flow-based compact ones and were tested on the two
sets of above-mentioned instances adapted by [13] and [18].

On average, the gap values of [13] and [18], although very
similar, are slightly better.

A multiple vehicle GRP with profits and TW is pre-
sented by Gavalas et al. [91]. The problem is defined on a
windy multigraph. It was motivated by route planning to find
multiple-day itineraries for tourists who are visiting a desti-
nation featuring several points of interest and scenic views.
The objective is to plan a specific number of walks spanning
a subset of nodes and edges of the graph so as to maximize
the overall collected profit; some nodes represent points of
interest and some edges are scenic street segments. Included
nodes and edges should be visited within their respective
TW, and the overall duration of each walk should be below
a certain threshold. To tackle this problem, a formulation, a
preprocessing procedure, an iterated local search and a sim-
ulated annealing are proposed. The methodology was tested
on instances created by the authors based on data related to
the city of Athens (with 249 nodes, 113 points of interest,
18 scenic routes and 100 hotels, which are the starting and
ending locations of daily tourist walks). The iterated local
search method outperforms the simulated annealing in the
quality of solutions produced, although it is usually more
time-consuming. Even when CPU time is equal for both algo-
rithms, the iterated local search still provides a better solution
value.

3.9.2. Multiple Profitable Arc Routing (KP-ARP). The
Multiple Profitable ARP (KP-ARP) is the generalization of
the P-ARP (Section 2.4.2) for multiple vehicles that each
perform a somehow limited route. The objective is to identify
K vehicle tours within the crews’ time limit, starting and
ending at the depot and maximizing net profit.
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Considering also that the profitable links may be either
mandatory or optional, Benavent et al. [32] present com-
pact flow-based models for KP-ARP on a mixed graph. The
models were tested on a set of 204 instances (with 24–50
nodes, 25–106 arcs, 12–44 edges and 4–12 vehicles) that
includes different proportions of mandatory/optional links
and capacities. A valid model achieves optima a few times
(24); however, an aggregated model provides good lower
bounds, and linear relaxation values show an average gap
of 5%.

Recently, Archetti et al. [10] study a profitable GRP. In
addition to the set of profitable edges, there is also a set of
profitable nodes with a profit that can be collected only once
and by its serving vehicle. The objective function is the max-
imization of the net profit, that is, the difference between the
total collected profit and the total travel cost. A mathemati-
cal formulation and valid inequalities to strengthen the linear
relaxation are provided. An aggregated formulation is also
proposed, allowing for the introduction of further inequal-
ities. A two-phase exact algorithm is then presented. This
consists of, firstly, a branch-and-cut involving the aggregated
formulation and the identification of valid inequalities; sec-
ondly, the use of these inequalities on a branch-and-cut that
hopefully ends with an optimal solution. The algorithm’s
good performance is shown by computational results on two
groups of instances adapted from gdb and val: one with 7–22
nodes (3–15 required), 10–48 edges (7–36 required) and 5–50
vehicles; and the other with 24–50 nodes (13–33 required),
34–92 edges (27–73 required) and 2 or 3 vehicles.

Zachariadis and Kiranoudis [209] present a local search
metaheuristic for a bi-objective problem. Instead of consid-
ering net profit, they maximize gross profit and minimize
travel time. Instances generated in [13] were used to validate
the methodology.

3.9.3. Multiple Minimum Bound Collected Profit (K-
MBPARP). The Multiple Minimum Bound collected Profit
ARP (K-MBPARP) on a mixed graph, under the designation
of multi-vehicle prize-collecting mixed capacitated ARP, is
presented in [32]. The aim is to find a minimum cost set
of routes, beginning and ending at the depot, collecting all
the required links, and choosing optional links so that the
total collected profit meets an imposed minimum limit, while
satisfying the capacity of the vehicles. One valid and one
aggregated compact flow-based formulation were presented
and tested in a large set of 1,942 instances, adapted from
MGRP instances (with 2–4 vehicles, 116–428 nodes, 13–789
arcs and up to 285 edges). For the instances with two vehi-
cles, the valid model obtained 612 optimums out of 972. As
expected, as the number of vehicles increases, the results
deteriorate, particularly for instances with a larger imposed
profit.

3.9.4. Multiple P-ARP with Multiple Services (KP-
ARPM). In this subsection we address profitable problems
with multiple vehicles where profit associated with a link may
be collected more than once.

Euchi and Chabchoub [84] study the problem on a com-
plete directed graph, where there is a maximum number of
times the profit of each arc can be collected. They present two
metaheuristics, both based on an adaptive memory procedure
but combined with two different methods: a tabu search and
a variable neighborhood search. A 2-opt procedure is also
implemented. Computational tests on instances with 5–140
nodes show that the best option consists of using the adaptive
memory procedure combined with the variable neighborhood
search and the 2-opt procedure. They report small gaps, of
up to 1%, over the best known solution values.

Also assuming a task can be serviced more than once,
Shafahi and Haghani [176] define a problem they refer to as
the Generalized Maximum Benefit Multiple CPP. This work
studies alternatives to the requirement that all routes must
begin and end at the depot. A mixed integer LP model is
proposed, and a set of constraints is changed to accommodate
each alternative. The problem has its application in security
patrolling, and an illustrative example of the University of
Maryland College Park campus network (with 12 nodes and
18 links) was used to compare the alternatives.

3.9.5. Other Multiple ARPs with Profits. Fernández et
al. [86] introduce the collaboration uncapacitated ARP. A set
of carriers is considered, each associated with a depot and a
tour. There is also a set of arc tasks, each assigned to a carrier.
Some tasks are mandatory, while others may be dealt with by a
collaboration of carriers to achieve the objective of maximiz-
ing the coalition of carriers’ profit. An integer programming
and a branch-and-cut are presented. The authors conclude
that the total gain is always greater if cooperation is allowed;
however, carriers may significantly decrease their individual
profit. Another version is therefore proposed in which carri-
ers may set thresholds on profit in the collaborative scheme so
that the overall profit is allocated in a more balanced manner.
A set of benchmark instances were generated (with 16–102
nodes), and results of extensive computational experiments
are presented and analyzed. Authors also analyze the prob-
lem from a game theory perspective. Other works combining
ARPs and game theory can be found in Hochbaum et al. [109],
who address security routing games with a multivehicle CPP,
in [98] with the k-centrum Chinese postman delivery prob-
lem and a related cost allocation game, or in [156] on games
arising from multi-depot CPPs.

4. ARC ROUTING APPLICATIONS

Arc routing applications embrace several complicated
real-world systems in which routing activities are to be per-
formed along the links of a network. This section is devoted
to the study of such applications from 2010 onwards, survey-
ing papers on distribution and collection operations, outdoor
activities, post-disaster operations and street cleaning and
marking, among others. Each subsection begins by outlin-
ing the specific applications, while the last subsection groups
together a few other, less researched applications.
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4.1. Distribution and Collection Routes

Routing for delivery or collection activities is one of the
most studied applications of ARPs. Very complex logistics
are usually associated with these systems, with the rout-
ing phase being very important not only because of its
high cost, but also because of the substantial environmental
impact. This section surveys some real applications, namely:
money collection, postal and newspaper delivery, and waste
collection.

4.1.1. Money Collection. Money collection gives rise to
some challenging new issues, since in order to prevent rob-
beries, planned routes should be as dissimilar as possible
while still minimizing the travel cost. To address this problem,
Constantino et al. [60] define the Dissimilar ARP (D-ARP),
where for one vehicle and during a time horizon, the objec-
tive is to collect all the tasks of a network every day, making
its tours on two different days as dissimilar as possible while
minimizing the total cost for the time horizon. The dissimilar-
ity between two routes is defined. Authors propose a mixed
integer LP model and a matheuristic crafted for the resolution
of compact models. The strategy was tested over proposed
instances for the problem.

4.1.2. Postal and Newspaper Delivery. Although we
may argue that delivery of print media is becoming less rel-
evant nowadays, there is still some space for research in this
area, mainly in the field of postal delivery. In fact, everyday
postal distribution is still a necessary activity that is closely
linked to ARP applications. A study by Chang and Yen [51]
appears to be one of the few post-2010 papers invoking a city
courier routing and scheduling problem to reduce operating
costs and improve service levels. The network is divided into
two levels based on whether customers are inside or outside
the central business districts (CBDs), with customers rep-
resented by links or by nodes, respectively. The problem is
thus considered as a generalization of a capacitated GRP,
since clients’ time-windows need to be met and two objec-
tives are established: balancing workload among different
couriers and minimization of total tour time. The problem is
transformed into a multi-objective multiple traveling sales-
man problem with strict TW, and a scatter search procedure
is developed. Real data from Maple Logistics, a city courier
company in Taipei, Taiwan, is used. As a conclusion, the
authors write: “the owner of Maple Logistics appreciates the
results with, however, one concern. That is, the daily route
plan could become quite different and may thus reduce his
couriers’ working efficiency due to unfamiliar surroundings.”

Corberán et al. [62] suggest mail delivery in certain coun-
tries (Germany, for instance) as a potential application for
the windy clustered prize-collecting ARP (2.4.4). As privati-
zation of postal services is a growing trend, companies may
potentially expand services to different districts.

The recent book chapter by Hasle [107] links ARPs to
newspaper delivery, detailing the inherent logistics, chal-
lenges, and the historical evolution of this field. It is noted that

the mixed capacitated GRP, including both required links and
nodes, is usually the most adequate model for such problems.

4.1.3. Waste Collection. Waste collection routes on a
door-to-door system are usually better handled through an
ARP. Surveys on waste systems (WS), including routing col-
lection, are conducted by Beliën et al. [30], Ghiani et al.
[94] and Han and Ponce-Cueto [106], who also distinguish
between collection systems based on whether they benefit
from a node or an arc routing approach. Several specific
cases of real-world WS demand generalizations concerning
modeling and solution methodologies. In developing these
generalizations, researchers identify factors that affect rout-
ing within these complicated systems, including vehicle types
and number; location, number and types of disposal facilities;
number and types of waste containers; network type; etc.

Martins et al. [141] and Ghiani et al. [94] study mixed
CARP compact models and matheuristics for a waste collec-
tion problem in Seixal, a municipality near Lisbon, Portugal.
Capacity constraints are replaced by time limit constraints.
Martins et al. [141] pursue a joint objective of minimiz-
ing total collection time (including service and deadheading
times) and minimizing the largest time difference among the
total collection times of any two tours (with one tour per
vehicle). This time difference is used to better balance tours
in terms of total collection times. The proposed matheuristic
begins with the resolution of an aggregated relaxed model
to identify the required links to be used as seeds within a
heuristic where some services are fixed for different vehi-
cle tours. Some required links are then assigned to a vehicle
service and linked with the vehicles’ seed. Once the problem
has been reduced, the valid model is applied to identify feasi-
ble solutions. Real-world-based instances are generated from
the Seixal network, with dimensions varying from 106 to 257
nodes and 143 to 439 links. Although tested on a relatively
small set of instances, results point to good solutions for iden-
tifying a set of balanced tours. Collection times increase as
imbalance decreases, as expected. Ghiani et al. [94] model
imbalance between tours by looking into the total collected
demand. The objective function includes only the minimiza-
tion of total deadheading. The matheuristic considered here,
although similar to that of [141], differs in its selection pro-
cess, where service links are fixed to vehicle tours. It also
begins with the resolution of a slightly different aggregated
model and ends with the resolution of the new valid model
for a smaller instance, as some services have become fixed
in the meantime. Larger reality-based instances were suc-
cessfully tested in terms of their solution characteristics and
specifically in terms of imbalance.

A waste collection study in Monção, a region in the
north of Portugal, was suggested by Rodrigues and Ferreira
[170] (and previously mentioned in Sections 3.4 and 3.7.3).
This scenario involves a heterogeneous vehicle fleet, mul-
tiple landfills, different types of waste, and a mix of rural
and urban areas. Three formulations are proposed based on
the mixed CARP (MCARP) of [96]. The first one general-
izes the MCARP model to include a heterogeneous fleet; the
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second considers multiple landfills; and the third joins the
first two, that is, extends the MCARP model to include both
the heterogeneous fleet and multiple landfills. A new dis-
tricting methodology is first applied to get smaller instances
(Section 3.7.3). Formulations were solved with CPLEX to
obtain solutions over three sets of instances available online
(see RF_Waste in Table 9): the first two were adapted from
some benchmark instances; the third represents real data from
the Monção case study. This region is about 220km2 and has
20,000 inhabitants. Judging from gap values obtained with
CPLEX, the models produce good solutions, always provid-
ing the optimum in scenarios with up to five tours, which,
according to the authors, fits the real situation.

The recyclable waste collection system in the municipal-
ity of Morón, a suburb of Buenos Aires, Argentina, with
about 320,000 inhabitants in an area of 55.6km2, was stud-
ied by Braier et al. [46] as a generalized directed RPP.
Traffic regulations, for example, forbidden left and U-turns
at signal-controlled intersections, are also considered. The
municipality comprises five administrative districts, each
divided into seven sectors, one per vehicle. Refuse is col-
lected once a week in all districts and throughout a district on
the same day. By considering the minimization of the travel
distance as the objective, the authors claim they also obtain
“lower fuel consumption, reduced emissions, reduced col-
lecting times and less traffic jams,” which seem to be credible
side effects. As previously mentioned in our discussion of the
generalized problem (Section 2.2.4), at least one link from
each pre-specified group of links needs to be serviced. An
expanded graph is applied to represent traffic regulations, and
open tours are considered. An integer programming model is
provided and feasible solutions identified through a simple
approach, using a model relaxation with no subtour elimi-
nation constraints. A procedure to generate feasible tours in
short computational times is then applied to real data net-
works. Although this procedure is fit for the real-case study,
it can easily be applied to solve general instances. The gener-
ated routes, which are slightly better than the previous routes
manually defined by drivers, cover more streets.

Whenever private companies are involved, garbage collec-
tion can be viewed from a profitability perspective. Corberán
et al. [62] refer to garbage collection as a potential application
for the windy clustered prize-collecting arc-routing problem
(Section 2.4.4). Their paper gives the example of “cities in
Minnesota (see the Web page of the Minnesota House of
Representatives) or in Buenos Aires, where garbage collec-
tion companies put in bids to municipalities for parts of cities
so that service is provided by different companies depending
on the areas.”

Very recently, and as the outcome of a waste collec-
tion project, Kiilerich and Wøhlk [118] suggest new CARP
variants, propose formulations and list several related real-
world instances. The new CARP variants, which authors
claim to better fit reality, include: three cases of multi-
compartment CARPs, one of which also considers a time
horizon (No-split multi-compartment CARP, Commodity-
split multi-compartment CARP, Multi-Day Commodity-split

multi-compartment CARP); vehicle coordination (coordi-
nated CARP), that is, the coordination of different vehicles
to collect different types of waste in a neighborhood on the
same set of days; and different service frequencies depen-
dent on need, that is, customers in each link have different
frequency needs (Semi-Periodic CARP). New large-scale
reality-based instances with thousands of nodes are proposed
(see W_CARPs in Table 9).

4.2. Outdoor Activities

Cycling is very popular in countries like Belgium or the
Netherlands, and it has become an “important source of
income for local economy of East Flanders” [185]. Travers-
ing scenic routes offers cyclists a mixture of sport and
leisure. Nowadays, these regions provide online applications
for cyclists to design their own trips, using the so-called
cycling networks. As state by Souffriau et al. [185], “The
East Flanders’ network is a concatenation of five regions and
is composed of 989 nodes and 2,963 arcs, with a total of
3,585km.” This software, developed by Souffriau et al. [185],
generates cycling tours on demand, with parameters such
as length, difficulty, area, budget limit, etc. The problem is
tackled as an arc orienteering problem (OARP) on a directed
graph, as the objective is to maximize the total collected score
(each arc has an associated score) within the defined budget
or length constraint (see Section 2.4.1). The length constraint
does not represent a hard imposition, given that cyclists usu-
ally do not mind pedaling a bit more. A greedy randomized
adaptive search procedure (GRASP) is developed to generate
the route, and a procedure is applied to try to escape from local
optima. Solutions provided by the GRASP heuristic are com-
pared with those produced by CPLEX for a proposed model,
over real-world data from the East Flanders cycle network.
Results suggest good performance for the GRASP methodol-
ogy, which was able to provide good solutions in one second
CPU time. As the authors state, “The approach was imple-
mented in two applications: an on-line cycle route planning
application offering personalized cycle routes based on user
preferences and an SMS service providing cyclists ‘in the
field’ with routes on demand.”

In a more recent paper, Verbeeck et al. [198] propose a new
mathematical model and two methods to generate solutions
for this same route planning problem. In this paper, a cyclist
may start the tour at a point selected from a set of possible
starting points, while in [185] the starting point is first chosen
and fixed. There are several other differences in [198]: a node
can be visited more than once, a score is associated with each
arc regardless of its length, and a lower bound is imposed on
the tour’s length. One of the proposed methods is a branch-
and-cut approach able to solve small-sized instances only.
For larger instances, a metaheuristic is devised and is capa-
ble of producing good-quality solutions in a few seconds.
Results were assessed using instances from [185], includ-
ing the reality-based ones, and some OARP instances were
adapted. New instances were also generated for the cycle trip
planning problem. This methodology may be incorporated in
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a web-based cycle route planner like that of [185]. The user
can specify a maximum distance between her/his home and a
starting point and select some route preferences, and the best
starting point and the best route are automatically tailored in
just a few seconds. The route may then be stored to a personal
device and sent to the user by SMS.

The company Route You envisaged the design of an inter-
active web application to suggest tours for outdoor activities,
such as mountain biking. The underlying problem, tackled
by Maervoet et al. [136], is a GRP with profits, as both arcs
and nodes have an associated attractiveness. Some nodes
represent the so-called POIs (point of interest), and both
the starting/ending point and tour length are defined by the
user. The aim is to find a tour that maximizes attractiveness
within a target path length and tolerance. The tour must match
user preferences, including some typified POIs, and may be
open or closed. A constructive heuristic approach is devel-
oped to suggest multiple spatially different tours in a short
computational time.

The identification of scenic tours may also represent an
ARP with profits application, as is suggested by, for instance,
[91], and is better detailed in Section 3.9.

4.3. Post-Disaster Operations

Berktaş et al. [37] relate unsettling figures concerning dis-
asters: between 1990 and 2012, as many as 340 disasters
occurred per year, involving a yearly average of 240 mil-
lion victims. Figures like this make the study of post-disaster
operations even more relevant.

Post-disaster actions usually involve several operations
research problems. Obviously, these problems require the
shortest possible decision-making process, time being a
crucial factor. Debris removal, in order to quickly restore con-
nections and channel the distribution of humanitarian aid, lies
within the scope of routing applications, and it is also part
of the newest application areas for arc routing. Çelik [50]
wrote a survey paper addressing several problems involving
network restoration and humanitarian operations after catas-
trophic events, such as earthquakes, storms or other natural
disasters or attacks with large affected areas. As the author
states, “the costly and complicated nature of these activities
has led to an increased level of interest concerning this field
in the OR/MS literature over the recent years.” In addition
to summarizing extant work, the survey suggests “potential
directions for future research by pointing to the gaps between
the needs in the field and the existing body of literature.”

Among the several objective functions that may be consid-
ered, we find: time to complete the repair operations; utility
functions related to demand satisfaction or penalties paid
for unsatisfied demands; measures of accessibility; and the
flow of people or commodities that can be supported by the
repaired network. Some equity-based objectives are often
also considered in order for humanitarian aid to be evenly
distributed. Problems are classified into different categories,
including: (i) “road restoration and rehabilitation (...) involves
either restoration of the transportation infrastructure into its

pre-event state, or the improvement or strengthening of the
network so that increased flow of people can be handled”;
(ii) snow removal problems emerge “in the aftermath of large
scale snowfall or avalanches” (here addressed in Section 4.4);
(iii) debris clearance, which “consists of opening up debris-
covered roads by pushing the debris to road sides”; and (iv)
debris removal, where the aim is to “collect, transport, and
dispose or recycle the debris in special temporary facilities.”
Çelik [50] summarizes these studies in tables, classifying
them by problem types, solution methods, and objectives as
well as involved decisions.

The Arc Routing for Connectivity Problem (ARCP) links
ARPs with network design and appears in relation to post-
disaster operations. Asaly and Salman [19] introduce this
problem to work on the connectivity of road networks in
the immediate response stage. First steps involve the eval-
uation of road conditions as well as the estimation of the
time needed to clear/open them. Only those blocked roads
that may be unblocked within a short period of time are
considered, and the network is then constructed by adding
other roads that were not affected by the disaster (i.e., that
are initially unblocked) and that will enable connectivity. All
blocked arcs must be cleared to obtain a strongly connected
network. The ARCP is then defined on directed and strongly
connected networks (including blocked and unblocked arcs).
Since traversal speed depends on the road damage, arc costs
are computed from estimated traversal times and are not pro-
portional to distances. Each blocked arc has two associated
deadheading costs, one before and one after it is unblocked.
The unblocked (unblocking service) cost is also consid-
ered. An emergency response fleet may include several types
of machines (e.g., drainage dump, satellite communication
vehicles, lighting vehicles, etc.) moving together as a sin-
gle vehicle, located at an emergency response facility. The
ARCP aims to identify a minimum cost tour, including the
depot, traversing all the blocked arcs at least once. Asaly
and Salman [19] formulate the ARCP, prove it to be NP-
hard, and evaluate the size of instances solvable by CPLEX
in short computational times, over instances generated from
the Istanbul (Turkey) road network. On the same base net-
work, ten scenarios including different sets of blocked roads
are generated, and two levels of damage lead to 20 instances.
The authors conclude that more instances should be used to
validate the methodology, and in the case of larger damage
networks that demand several vehicles, a partitioning step
may first be applied to assign each vehicle a zone unblock.

Debris clearance in an arc routing context is also addressed
in references [3, 4, 37, 117, 153, 171, 199], as detailed below.

Kasaei and Salman [117] work on two ARPs. One coin-
cides with the ARCP while the other pursues the maxi-
mization of the total benefit gained by reconnecting the
network. This second problem is called the Prize Collect-
ing Arc Routing for Connectivity Problem (PC-ARCP). We
emphasize that this name is coherent with the terminol-
ogy adopted in Table 3, because although the problem is
similar to an OARP with no time limit constraint, it dif-
fers in the connectivity restoration aspect. Here, the time
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limit is the minimum time needed to restore network con-
nectivity. Two mixed integer programming models and two
versions of a variable neighborhood search matheuristic
are presented and are capable of providing feasible solu-
tions in short computational times. Computational experi-
ments were conducted through adapted RPP instances (with
41–465 nodes and 98–1,055 edges) and real-life data based
on the Istanbul city road network (with 349 nodes and
647 links) within several disaster scenarios. The matheuris-
tic values are compared against those obtained by solving
the models with CPLEX solver within a fixed time limit.
Small gap values and CPU times allow Kasaei and Salman
[117] to conclude that the heuristics produce high-quality
solutions.

Akbari and Salman [4] generalize the second problem of
[117], which is the maximization of the prize in reconnect-
ing the damaged network (PC-ARCP), by including a time
limit constraint. Here, the prize gained from reconnecting a
component is derived from the number of people it benefits.
That prize may also be weighted to prioritize the components,
that is, higher weights assigned to airports, schools, hospitals,
etc. In this problem, referred to as KPC-ARCP, several vehi-
cles are considered, and the authors include unblocking link
decisions originating from their preliminary work in [5]. A
MIP model and matheuristics are proposed. The matheuris-
tics involve a relaxed model, a Lagrangian relaxation and the
resolution of single vehicle problems in order to obtain lower
and upper bounds. The instances used align with those in [3],
and very good results are reported.

Akbari and Salman [3] focus on debris removal and on the
need to identify a synchronized work schedule for road clear-
ing teams when reconnecting the damaged network. Each
team is assigned to a different vehicle, giving rise to the mul-
tiple ARCP (K-ARCP). Multiple depots are also considered,
since vehicles may be located at different points. No blocked
link may be traversed before having been cleaned, and thus
node arrival times are also an important part of the solution.
A MIP model and a matheuristic, mixing solutions from a
relaxed formulation with feasibility and local search proce-
dures, are developed. Three sets of instances were generated
from the Istanbul network (with up to 349 nodes, 689 edges,
6 connected components and 4 vehicles), and randomly gen-
erated instances with Euclidean distances were also used to
validate the heuristic’s performance. Very good results are
reported and commented on.

Sahin et al. [171] represent the first areas to be serviced,
such as schools, hospitals, etc., as critical nodes, and they
consider blocked roads connected to those areas as links
needing service, thereby adapting a GRP. The objective is
the minimization of the total effort to visit all critical nodes,
measured by both travel and debris removal times. The pro-
posed model identifies an order in which to visit the critical
nodes, the route including these nodes, and the blocked roads
to be cleaned. As the model fails to find solutions quickly,
a heuristic method beginning with a constructive procedure
and followed by an improvement procedure was also derived.
The methodology was tested on instances generated from

Istanbul’s Kartal municipality (with 45 nodes, including 7
critical), with different sets and number of blocked roads.
The heuristic gap values are considered to be quite good.

Berktaş et al. [37] addressed this same problem through
two models, considering two different objectives. The first
model aims to minimize the total time to reach all criti-
cal nodes, while the second minimizes the total weighted
sum of visiting times, with weights being used to prioritize
critical nodes. New models, with a smaller number of vari-
ables than those of [171], were provided and produced better
results on the Kartal municipality instances. New data from
the Bakirköy district in Istanbul (with 73 nodes, 15 of them
critical) was also tested, and feasible solutions were obtained
via a new heuristic procedure that includes the resolution of
a simpler MIP model.

Ozdamar and Aksu [153] develop a constructive heuristic
to identify the routes for a limited number of bulldozers to
unblock roads within time-dependent travel times based on
road conditions. A cumulative network accessibility is used
to account for dynamic road conditions. Two objectives are
considered: minimization of the unblocking times, that is, the
maximization of accessibility; and minimization of the max-
imum unblocking time. Road networks based on the maps of
two districts in Istanbul (Caddebostan and Fatih) were used to
generate post-disaster scenarios. Several rules were applied
to generate different feasible routes, even for large networks.
The authors claim these methods “are robust under damage
assessment uncertainty.”

Walliser et al. [199] define an open hierarchical routing
problem to deal with debris removal. The road network is
divided into priority sets that must be serviced in a hier-
archical order. Since the planning period usually extends
throughout multiple days (all those needed to restore the road
network), the aim is to identify minimum cost vehicle routes
departing from a depot and servicing all required (blocked)
links with no need to return to the depot. Personnel replace-
ment and refueling is performed during the operation and
leads to a time delay. Servicing a link consists of pushing
debris to the roadsides without impact on vehicle capacity.
Moreover, each link can be traversed more than once, ser-
viced more than once, and serviced by different vehicles at
the same time, if necessary to remove the accumulated debris.
A blocked road may only be traversed (deadheaded) after
being cleaned. The problem is modeled, and a constructive,
rule-driven heuristic is proposed. Two beam search processes
are also developed. These are modified branch-and-bounds,
where the number of available nodes at each level of the
branch tree is limited by a beam-width constraint that keeps
elite nodes and discards others. A network with 808 nodes and
1,126 links was derived from Geographic Information Sys-
tem data for the Fort Stewart military installation in Georgia
(USA), and different crew sizes were considered to compare
the different heuristics proposed.

After debris is moved to the roadsides in the unblock-
ing phase, the collection phase commences. Collection is
a huge operation that is extremely expensive and may last
for several months or even years. Pramudita et al. [159] and
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Pramudita and Taniguchi [158] study debris collection and
transportation as an augmented new undirected CARP, where
new constraints, representing accessibility between different
areas, are added. Two types of required arcs may be consid-
ered: blocked roads, from which debris needs to be removed
and transported; and cleared roads, from which the remaining
debris still needs to be transported. The objective is to service
all required arcs at minimum cost while including only feasi-
ble vehicle tours. As usual, blocked arcs can be traversed only
after being serviced; therefore service sequence needs to be
taken into account. Intermediate depots where vehicles may
unload are also considered and vehicle capacity is imposed. In
both studies, the CARP is transformed into a CVRP and fea-
sible solutions are found with a tabu search for the CVRP. The
two papers differ in the set of instances tested. Pramudita et al.
[159] used small-sized instances to check the methodology.
Pramudita and Taniguchi [158] report results on VRP bench-
mark instances and on data derived from real networks in
the Tokyo metropolitan area. The authors conclude that their
methodologies allow the resolution of large-scale instances.

4.4. Road Cleaning and Marking

Street cleaning and marking are common arc routing
applications, as vehicles drive along streets to perform their
services. Several additional and complicating constraints
may be needed, as in snow plowing or debris removal
operation, which demand hierarchical services. This section
surveys post-2010 papers dealing with winter road cleaning
(snow plowing or salt spreading operations), street cleaning
(sweeping), and street maintenance operations.

4.4.1. Road Cleaning. Blazquez et al. [39] deal with a
street sweeping routing problem by identifying an RPP in a
special graph. Each street requiring cleaning needs to be ser-
viced as many times as the number of its sides, since a vehicle
can sweep only one side at a time. For instance, a street with a
central divider or median needs four vehicle passages. More-
over, the vehicle tours must comply with traffic flow and turn
constraints. The problem is transformed into an equivalent
vehicle routing problem, and known methodology is applied
to generate feasible solutions for the northeast area of the
municipality of Santiago, Chile. The authors report savings
of about 37% in the distance traveled.

4.4.2. Road Cleaning in Winter. In areas with severe
winters where it often snows or where roadway icing often
occurs, a common problem is the identification of the min-
imum cost (distance, time) tour(s) to be assigned to plow
vehicle(s). As with snow plowing, we may also find sev-
eral applications dealing with deicing vehicles that spread
chemicals and abrasives on the streets. Deicing needs to be
performed on a regular basis during bad weather and with spe-
cial attention to highways, while plowing is essential when
snow falls.

Perrier et al. [155], Campbell et al. [49], and Eglese et
al. [83] survey papers considering the routing of vehicles for

winter abrasive or chemical spreading operations. These sur-
veys contribute to the literature by offering a classification
scheme for the models developed and by providing method-
ologies including some practical operating constraints.

Xie et al. [206] and Gáspár and Bencze [90] study the rout-
ing of deicing vehicles to reduce road maintenance costs and
environmental pollution. Xie et al. [206] consider different
factors influencing routing decisions, namely: the charac-
teristics of road networks, including the operating region
boundary influences; the starting points; the type of the vehi-
cles; location, type and number of stations to load the vehicles
if needed; and tour constraints such as load balancing. A
model is provided, as well as a genetic algorithm to generate
feasible solutions for a numeric example.

Gáspár and Bencze [90] apply existing CARP method-
ologies to study salting route optimization in a Hungarian
county. The authors consider several scenarios that include
different salt depots representing intermediate facilities, and
these are compared against the utilization of only one central-
ized depot, which the authors refer to as the standard variant.
A cost-benefit analysis is provided.

Routing for snow plowing vehicles is the core work in
Refs. 81, 82, 110, 126, and 172. As with the Hungarian salt-
ing route study discussed above, Liu et al. [126] also resort to
existing CARP methodologies, in this case to minimize the
total travel distance for snow plowing operations in the south
part of the city of Edmonton in Alberta, Canada. The street
map for the selected zone includes 91 roads and 55 nodes,
and only one vehicle is used with a working time limit of four
hours. The authors apply a memetic algorithm with extended
neighborhood search and perform some sensitivity analysis
concerning the depot location and the number of tours.

To deal with snow removal on secondary roads, such as
cycle paths, sidewalks, or paths in pedestrian areas, Holmberg
[110] develop heuristics for the undirected RPP. The problem
differs from the one mentioned above in, for instance, the
type of equipment used. Also, the primary roads, which are
assumed to be already cleared, may be used to reach the
secondary ones. The methods were tested over several groups
of instances, not including real ones, and the authors conclude
“that it is practically possible to solve instances of relevant
sizes in real time.”

Kramberger et al. [120] use GIS technology, together with
undirected arc routing with priority nodes, to tackle a deicing
problem. Penalties are associated with delays in reaching the
priority nodes, and the aim is to find a tour that traverses each
edge at least once and minimizes the total cost (including
traversal and penalty costs). Results are reported for ran-
dom and real data based on the street network of Celje town,
Slovenia.

Salazar-Aguilar et al. [172] define the Synchronized ARP
(SyARP) for snow plowing, based on the need to identify a
set of tours that services all streets and in which streets with
multiple lanes are plowed at the same time by several syn-
chronized vehicles. Vehicles start and end at a depot, and by
following one another they may push snow to the sides of
large streets and avoid forming snow mounds in the middle.
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The objective is to minimize the longest route in order to ser-
vice all street segments in the least possible time and thereby
obtain a set of balanced tours. Salazar-Aguilar et al. [172] for-
mulate a mixed integer programming model, prove it to be
NP-hard, and develop an adaptive large neighborhood search
matheuristic, including a construction and an improvement
phase. Computational results are reported over random gen-
erated instances as well as data from a real network. This
work focuses on the “city of Dieppe, a suburb of Moncton in
New Brunswick, Canada, with a population of about 20,000.”
The associated network has 430 nodes and 1,056 arcs, all of
which have one or two lanes. Tests are used to assess the
quality of the operators applied, as well as the effect of the
improvement phase. Tours generated for the real case seem
to be realistic.

Jang et al. [116] propose a formulation and a heuris-
tic that integrates several design decisions for a winter
road maintenance operation, namely: depot location, sec-
tor design, vehicle route design, vehicle scheduling and
fleet configuration. The procedure was applied on the
state highway road network in Boone County, Missouri,
USA, which is maintained by the Missouri Department of
Transportation.

Dussault et al. [81, 82] resort to windy networks to address
plowing with precedence constraints, motivated by the fact
that deadheading a cleaned link is faster than deadheading
it when it is covered with snow or ice. Traversal costs are
therefore dependent on the sequence of streets in a tour.
It is also observed that some steep streets are difficult or
impossible to plow when traveling uphill. The aim, then,
is to identify minimum cost tours “that try to avoid plow-
ing uphill on steep streets and take advantage of the faster
traversal time on plowed streets.” Some streets are consid-
ered crucial and must be plowed first. Dussault et al. [81]
formulate the problem by considering that no completely
unplowed street may be deadheaded before it is cleaned. They
develop a method capable of generating near-optimal tours
for instances with up to 200 nodes. This method starts by
solving a problem to identify the number of times each link
needs to be traversed. Then an initial tour is identified, and
it is next improved through a heuristic that takes precedence
relationships into account. The heuristic uses a local search
and a re-initialization procedure and is tested over adapted
WRPP benchmark instances.

In contrast, Dussault et al. [82] ignore the concept of
imposed precedence. In this paper, the authors assume snow
depth allows streets to be deadheaded before being serviced.
The aim is to find a set of tours, one per vehicle, starting and
ending at the depot, plowing each arc twice (once on each
side of the street), and minimizing maximum tour length. The
procedure previously proposed in [81] is adapted, and results
are generated for the same set of instances. Authors point out
that this methodology may easily be adapted to some related
problems.

The routing of street cleaners and the design of street snow
plowing or snow-salting tours may also be tackled via the
maximum benefit CPP addressed in [67]. The advantage of

this approach is that it relaxes the imposition that all links
must be serviced, while allowing some to be serviced more
than once if it is beneficial.

4.4.3. Road Maintenance. Chen et al. [53, 54] study
the daily maintenance operation of a road network, which
involves several challenging tasks, including: visually check-
ing the operational status of each segment, reporting defects
on the roads, and evaluating the function of auxiliary facili-
ties. The problem becomes more difficult when considering
stochastic service and travel times (normal distribution is
assumed). The problem is addressed as a generalization of the
CARP, minimizing both the total deadheading cost and the
number of vehicles needed, and such that the probability of
having a tour lasting longer than a maximum permitted value
does not exceed a given threshold (referred to as a chance con-
straint). A model, a branch-and-cut algorithm and an adaptive
large scale neighborhood are presented. According to the
authors, results obtained over randomly generated instances
derived from real data from a road maintenance agency in
Shanghai, China, show the effectiveness of the methodology.
Chen et al. [54] state that this “is an initial work demonstrat-
ing the potential benefits of including stochastic service and
travel time in ARPs.” In a later paper, Chen et al. [53] pro-
pose a robust optimization approach for the same problem,
allowing them to consider the risk of extreme outcomes. For
this second study, the authors changed the objective to the
optimization of the worst-case value over all uncertainty data
within a bounded set. The robust model is solved via a branch-
and-cut algorithm, and sensitivity analysis is performed on
the level of robustness and on the number of vehicles. Chen
et al. [53] conclude that this model is a better option than
their previous one, and they state that “robust optimization is
an attractive alternative for solving routing problems under
uncertainty.”

Generally similar in structure to the road maintenance
problem, safety inspection of railroad tracks is addressed
in Lannez et al. [122, 123]. With the minimization of total
deadheading distance as their objective, Lannez et al. [122]
first study this problem as a rich mixed ARP. A daily time
limit is considered, given that inspection vehicles cannot be
on the road for more than six hours per day. Furthermore,
the vehicles have a water tank with a limited capacity, which
can be refilled at special stations but no more than once per
shift, as it is a very time-consuming task. The study focuses
on the inspection of primary tracks requiring a visit once or
twice a year. Complicating constraints are related to the time
limit per shift, water supply, track outages and heterogeneous
fleet. The huge real network size presents an additional chal-
lenge, supporting the need for the study. The authors find that
a column generation approach performs better than a greedy
algorithm over a real data set. The network has 1,600 arcs, 500
edges, and 770 nodes, of which 90 are refill nodes. Three dif-
ferent scenarios are considered. For the same problem, and
the same real case study, Lannez et al. [123] later present
a new model, a matheuristic based on both Benders and
Dantzig-Wolfe decompositions and a dynamic programming
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heuristic. The resulting methodology and generated solu-
tions may easily be used and adapted by the operator, taking
into account the real speed of vehicles and precise dates of
outages, or including desired pathways.

A recurrent problem in Taiwan is the re-pavement of
roads. Huang and Lin [111] consider the routing of con-
struction machinery for road resurfacing activities performed
by contracted companies simultaneously working on sev-
eral road resurfacing jobs. Time window constraints are
imposed to guarantee some precedence constraints between
road treatments, as each road needs multiple treatments in
a pre-determined sequential order. A multi-treatment CARP
with TW is then defined. The aim is to identify minimum
cost routes that will treat all the required roads in the estab-
lished order. This problem is transformed into an equivalent
traveling salesman problem, and an ant colony optimization
algorithm is applied. Benchmark classical CARP instances
were adapted and used to validate the methodology, which
was then applied to a real-case study. This was adapted
from a sub-network of Kaohsiung City in Taiwan, contain-
ing 202 nodes and 348 arcs, 101 of which require only
one type of treatment, 130 requiring a different type, and
the remaining ones requiring both treatments. The authors
concluded their proposed methodology to be an efficient
one.

As detailed in Section 3.7.1, Riquelme-Rodríguez et al.
[166] and [167] study a new application for open-pit mines.
The problem is addressed as a LARP, with the goal of identi-
fying the best locations for water depots to be used by vehicles
periodically spraying the mine hauling roads to eliminate
dust.

4.4.4. Road Marking. Road marking is a natural arc
routing application. A real case study in Quebec, Canada,
leads Amaya et al. [6] to a CARP with refill points and
multiple loads, as detailed in Section 3.4. The two types of
vehicles employed are: the finite capacity Servicing Vehicle
(SV), which marks the roads; and the Refilling Vehicle (RV)
tank trucks, which meet up with and replenish the SVs. A RV
may refill an SV more than once. The objective in this case is
to identify minimum cost vehicle tours for both vehicles on
a directed graph. A model and a related cutting plane algo-
rithm are presented to optimally solve the smaller instances.
Moreover, a route-first cluster-second heuristic is developed.
Randomly generated instances were used to assess the per-
formance of the proposed methods, and a real road network
from a region in Canada was also used.

Working on the same problem, Salazar-Aguilar et al.
[173] assume that routes for SV and RV vehicles must
be synchronized (as discussed in Section 3.8). They also
assume that certain links and nodes demand service, and
they tackle the problem as a synchronized GRP. Three differ-
ent replenishment policies are considered. An adaptive large
neighborhood search heuristic, generalizing the one devel-
oped by Salazar-Aguilar et al. [172] for the snow plowing
problem, is presented and successfully tested over a large set
of randomly generated instances.

4.5. Other Applications

A very common application for ARPs, already discussed
in relation to the close-enough problem, is routing for meter
readers. Eglese et al. [83] present a very interesting survey of
meter reading applications, including the historical evolution,
not only of the reader operation itself from its early roots
to the current automated reality, but of the methodological
evolution in tandem with computer evolution.

4.5.1. Security Patrol Routing. Some housing develop-
ments or residential areas need to provide 24-hour security for
residents, so constant patrolling of roads is essential in these
situations. Willemse and Joubert [201] investigate this prob-
lem as an ARP, or more specifically, as a min-max K-ARP,
and present a tabu search algorithm for patrol route design.
The study focuses on a case in South Africa, where gated
communities are a growing phenomenon, but in fact these
types of neighborhoods are proliferating in many countries
all over the world, wherever security is an increasing concern,
and this study may be applied to several real-world situations.
Willemse and Joubert [201] identify several complications in
patrol route design: patrolling must be unpredictable, that is,
cannot be repeated the same way every day; all roads and
paths have to be patrolled; and routes should be evenly dis-
tributed among the guards. A real problem instance from an
estate in Gauteng, South Africa, is used to compare tours
generated by the algorithm with previously existing ones.
The tabu search methodology was able to produce better
tours, which were also better balanced. Benchmark instances
from the literature were used to assess the performance of the
methodology. From the computational results, Willemse and
Joubert [201] conclude that “the algorithm is robust enough to
generate quality patrol routes on different road networks. (...)
Most notable are the improvement of unpredictable patrolling
and the placement of checkpoints.” To generate an unpre-
dictable set of tours, several solutions were generated and
routes were chosen at random for implementation. However,
no check was conducted to truly assess dissimilarity between
the chosen tours.

Also embracing the design of security patrol routes, the
generalized maximum benefit multiple CPP is defined in
[176]. As discussed in Section 3.9.4, the paper’s main pur-
pose is to study alternatives to the requirement that all routes
must begin and end at the depot. To evaluate the alternatives,
integer programming formulations were developed, and the
campus of the University of Maryland College Park, USA,
was used as an illustrative example.

4.5.2. Industrial Cutting Applications. When units of
raw material are industrially cut, arc routing may be applied
to optimize the cutting path. In studying one such case,
Rodrigues and Ferreira [168] deal with a continuous pro-
cess path-cutting, meaning that the cutting tool never leaves
the cutting surface, with no restrictions on the total cutting
of a given piece. The authors propose a memetic algorithm
to solve an associated RPP and illustrate its application for
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path-cutting operations within the company. The objective
is to reduce the distance/time traveled by the cutting tool.
An RPP is defined, where required edges represent pieces
to cut and deadheading represents the paths between them
and along which the tool needs to move without cutting.
An RPP tour minimizing the total time then constitutes
an optimal cutting path. Four reality-based instances for
the cutting problem were used, as well as several known
RPP instances, and results are compared with known pro-
cedures from the literature. The authors conclude that the
memetic algorithm “behaved very well in general, except for
some specific instances, which had relatively more connected
components.”

4.5.3. Mobile Mapping Van Problem. Digital maps are
often created by teams driving so-called mapping vans
through streets. Vansteenwegen et al. [197] studied this prob-
lem for Tele Atlas, a Netherlands-based company, which uses
a fleet of vehicles to take photos of streets and road signs. To
minimize the number of days a vehicle needs to traverse all
the streets in a given network, a CARP is defined, with a max-
imum travel time per day (Section 3.5). Soft time windows
are established to avoid taking pictures against the sun, and
a penalty is incurred whenever a time window is violated.
The network is a mixed one, and the company uses a sin-
gle vehicle that begins and ends service each day at a fixed
node (a hotel). Authors pursue the minimization of the num-
ber of days by minimizing the total travel time per day, and
they aim to identify the sequence in which links must be ser-
viced. The problem is transformed into an equivalent vehicle
routing problem, and a hybrid metaheuristic is then applied.
This latter first includes a local search phase to diminish the
number of days, then uses an iterated local search phase to
minimize time window violations. The algorithm was first
tested on VRP instances and then applied to solve real cases
generated from a cycling network in East Flanders, Belgium.

5. FINAL REMARKS

This annotated bibliography has followed the study of arc
routing through seven very productive and exciting years.
The number of authors and publications has increased at an

impressive rate as a result of previous pioneering works, and
the current panorama forms the corollary for promising years
to come. To identify some emerging patterns and trends in
arc routing, we conclude with the following observations.

It seems consensual that although a transformation into a
node routing problem is possible (and sometimes beneficial),
the direct study of ARPs and their characteristic uses leads to
better results. It then becomes possible to develop methods
that are finely tuned for the specificities of each problem, and
this is most certainly a relative advantage.

Sophistication in crafting and a continued refinement
of the underlying methodologies have been broadening the
range of possibilities for arc routing. As computer technology
evolves, it becomes possible to “attack” more complicated
problems that are more accurate representations of real sys-
tems. In fact, real-world applications have already benefitted
from research in this area, and arc routing methodologies to
support decision making are both growing in number and
broadening in range.

Interestingly, the very necessary standardization of test
data has led authors to create sets of instances and make them
globally available to the scientific community. In fact, many
instance sets are now available online, and online software
libraries can be used for instance generation or solving sub-
problems. Any comparison of methodologies gains clarity
and depth when results are obtained over the same sets of
data, as authors can readily obtain a performance assessment
against the best results published online.

We conclude with several observations on methodology.
First, we note that (meta)matheuristics and branch-and-cut
procedures seem to have taken their place among the more
useful methods for solving ARPs, and the theoretical study
of these problems will be substantially beneficial. Second,
we see a growing interest in the classification of solutions
not only in terms of their global cost, but also in terms of
their “attractiveness” or aesthetic characteristics. In fact, the
practical implementation of the generated solutions often
benefits from a carefully shaped output that is appealing
to practitioners. Finally, a new and exciting field of study
lies in the natural stochasticity of real problems. This is
an interesting and promising avenue to explore in future
research.
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